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Optimal and robust control theories are used to determine effective, estimator-based
feedback control rules for laminar plane channel flows that effectively stabilize linearly
unstable flow perturbations at Re = 10 000 and linearly stable flow perturbations,
characterized by mechanisms for very large disturbance amplification, at Re = 5000.
Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the
control, and the flow measurement is derived from the wall skin friction. The control
objective, beyond simply stabilizing any unstable eigenvalues (which is relatively
easy to accomplish), is to minimize the energy of the flow perturbations created by
external disturbance forcing. This is important because, when mechanisms for large
disturbance amplification are present, small-amplitude external disturbance forcing
may excite flow perturbations with sufficiently large amplitude to induce nonlinear
flow instability.

The control algorithms used in the present work account for system disturbances
and measurement noise in a rigorous fashion by application of modern linear control
techniques to the discretized linear stability problem. The disturbances are accounted
for both as uncorrelated white Gaussian processes (H2 or ‘optimal’ control) and as fi-
nite ‘worst case’ inputs which are maximally detrimental to the control objective (H∞
or ‘robust’ control). Root loci and transient energy growth analyses are shown to be
inadequate measures to characterize overall system performance. Instead, appropri-
ately defined transfer function norms are used to characterize all systems considered
in a consistent and relevant manner. In order to make a parametric study tractable
in this high-dimensional system, a convenient new scaling to the estimation problem
is introduced such that three scalar parameters {γ, α, `} may be individually adjusted
to achieve desired closed-loop characteristics of the resulting systems. These scalar
parameters may be intuitively explained, and are defined such that the resulting con-
trol equations retain the natural dual structure between the control parameter, `, and
the estimation parameter, α. The performance of the present systems with respect
to these parameters is thoroughly investigated, and comparisons are made to simple
proportional schemes where appropriate.

1. Introduction
The behaviour of small flow perturbations in simple laminar shear flows is an

important and well-understood problem (Drazin & Reid 1981). As the Reynolds
number is increased, laminar flows often become unstable and transition to turbu-
lence occurs. The effects of the turbulence produced are very significant and often
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undesirable, resulting in increased drag and heat transfer at flow boundaries. Thus, a
natural engineering problem is to develop methods of flow control which can delay
or eliminate transition to turbulence.

A firm theoretical basis for the control of small perturbations in viscous shear
flows is only beginning to emerge. Some important steps in this direction, for the
consideration of two-component (2C) disturbances, are provided by Hu & Bau
(1994), Joshi, Speyer & Kim (1995, 1997), and Joslin et al. (1997). In these works,
the eigenvalues of the linearized transition problem are successfully stabilized in a
closed-loop framework such that the dynamics of the vertical velocity component
of the flow acting in concert with the controller is considered. Hu & Bau (1994)
examines a restricted class of multiple-input/multiple-output (MIMO) proportional
controllers with a single controller gain, with skin friction as the measurement and wall
temperature as the actuation. Joshi et al. (1997) examines a single-input/single-output
(SISO) proportional-integral (PI) controller (i.e. a controller with both proportional
and integral terms), with single-point skin friction measurements used to determine
each sine-wave component of the distributed wall velocity actuation. Joshi et al. (1995)
consider theH2 control of a problem related to the supercritical case presented here,
reducing the problem to the nine least-stable modes in a Matlab implementation
of an H2 controller, and make several interesting theoretical observations about
the effects of the distributed nature of the problem at hand. A formal treatment
of the distributed nature of the present problem is given by Bamieh (1997). Joslin
et al. (1997) also apply H2 control theory to a problem related to the supercritical
case presented here; in their approach, the control is determined through an adjoint
formulation requiring full flowfield information.

Root loci, which partially characterize system behaviour by tracking the movement
of closed-loop system eigenvalues as a function of control parameters (Joshi et
al. 1995, 1997), are inadequate to quantify the performance of the present closed-
loop systems, as they do not address the non-orthogonality of system eigenvectors
(Trefethen et al. 1993). It is possible to characterize the non-orthogonality of a set of
eigenvectors by determining the maximum transient energy growth of a stable system
from a deleterious set of initial conditions by a variational formulation (Butler &
Farrell 1992). However, such an approach is, at best, a dubious approximation of the
method by which external disturbance forcing actually excites flow perturbations.

To adequately characterize the behaviour of a non-orthogonal linear system and
its excitation by external disturbances, taking into account any known structure by
which external disturbances force the state equation, transfer function norms are the
appropriate measure (Skogestad & Postlethwaite 1996). In the present work, norms
of the disturbance to state (w → x) transfer function and the disturbance to control
(w → u) transfer function are introduced to quantify separately the response of the
state and the response of the control to Gaussian and worst-case disturbances. For
both of the cases considered, it is shown that the state response is significantly reduced
in the closed-loop systems by application of modern control theory. Further, the r.m.s.
of the control applied to achieve this reduced state response is bounded and may be
kept small. On the other hand, the r.m.s. of controllers which contain a proportional
component, such as that of Joshi et al. (1997), in response to Gaussian disturbances
is shown to be unbounded.

The present work improves upon previous analyses of flow transition by rigorously
accounting for state disturbances and measurement noise in both a Gaussian and a
worst-case sense. The controllers and estimators used are determined by application
ofH2 (‘optimal’) andH∞ (‘robust’) approaches for linear problems. These techniques
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have recently been put in a compact form by Doyle et al. (1989), and are shown to
be well suited to the current problem.

A two-step control approach is used. First, a state estimate is developed from a
(potentially inaccurate) model of the flow equations, with corrections to this state
estimate provided by (noisy) flow measurements fed back through an estimator
feedback matrix L. This state estimate is then multiplied by a controller feedback
matrix K to determine the control. Control theory is used simply to compute the
matrices K and L.

Potentially, this approach can yield better results than a proportional controller. In
comparison to the SISO proportional approach, the present estimator-based approach
has many more parameters in the control law (specifically, the elements of the matrices
K and L), which are rigorously optimized for a clearly defined objective. In this manner,
large multiple-input/multiple-output (MIMO) systems are handled naturally and the
controller is coupled with an estimator which models the known dynamics of the
system itself.

Classical control approaches, such as the PI controller of Joshi et al. (1997), are
sufficient to stabilize any unstable eigenvalues in the present problems. However,
modern (i.e. optimal and robust) control approaches produce closed-loop systems
which are far less sensitive to external disturbances (as quantified in § 6.1), and thus
are far less likely to exhibit nonlinear instabilities when the external disturbance
forcing is of finite magnitude. Many problems in fluid mechanics, including the
later stages of transition and turbulence, are dominated by nonlinear behaviour. In
such problems, the linear analysis performed in this paper is not valid. Iterative
optimal control approaches over finite time intervals, which make use of full state
information, may still be formulated (Abergel & Temam 1990) and performed (Moin
& Bewley 1995) with impressive results. In order to make such schemes practical, one
must understand how to account for disturbances in a rigorous fashion and how to
estimate accurately the necessary components of the state (for instance, the location
and strength of the near-wall coherent structures) based on limited flow measurements.
The present paper makes these concepts clear in a fluid-mechanical sense, albeit for
a linear problem, and thus provides a step in this development. Techniques to extend
the robust control concept, introduced for problems in fluid mechanics in the present
work, to nonlinear problems (such as turbulence) are discussed in Bewley, Moin &
Temam (1997) and Bewley, Temam & Ziane (1998).

1.1. Outline of paper

The structure of the remainder of the paper is:
Section 2: the governing equations for the flow stability problem are put in a stan-

dard notation which makes subsequent application of control theory straightforward.
Two specific cases are identified to be examined in detail: one supercritical and one
subcritical.

Section 3: the control approach and numerical method used are briefly summarized.
Section 4: the methods used to analyse the open-loop and closed-loop systems are

reviewed.
Section 5: the uncontrolled (‘open-loop’) systems are studied in detail.
Section 6: the controlled (‘closed-loop’) systems are studied in detail. Root loci,

which demonstrate the movement of the closed-loop system eigenvalues with respect
to control parameters, are shown to illuminate some general trends, but fail to provide
a quantitative measure of system performance. Maximum transient energy growth,
which indicates non-orthogonality of closed-loop system eigenvectors, also fails to
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provide a quantitative measure of system performance. The r.m.s. response of the
state and the control to white Gaussian disturbances and ‘worst-case’ disturbances is
ultimately quantified using the 2-norm and the ∞-norm of the appropriate transfer
functions, and the system behaviour as a function of the control parameters {γ, α, `}
is thoroughly investigated.

Section 7: important results are summarized and concluding remarks are made.

2. Governing equations
In this Section, the equations governing small flow perturbations in a laminar

channel flow (Poiseuille flow) are succinctly summarized in a form to which standard
control techniques may be applied. This familiar discussion is presented to precisely
define the problem under consideration, and to demonstrate that the simpler and
more intuitive ‘classical’ derivation of the flow stability problem may be used easily
in a controls setting, bypassing the involved stream function derivation of Joshi et
al. (1995, 1997) which leads to a state-space formulation for two-component (2C)
perturbations only. Readers interested only in how the control techniques are applied
to the flow stability problem derived here are advised to proceed directly to § 3.

In the present development, it is assumed that an array of sensors, which measure
streamwise and spanwise skin friction, and actuators, which provide wall-normal
blowing and suction with zero net mass flux, are mounted on the walls of a laminar
channel flow. It is also assumed that a sufficient number of sensors and actuators is
installed in both the streamwise and spanwise directions so that, in these directions,
individual Fourier components of wall skin friction and wall transpiration may be
approximated. The control analyses in the present work are then carried through
for particular wavenumber pairs. The next natural step after the present work is to
compute an array of controllers at an array of wavenumber pairs with the methods
developed herein, then to inverse transform the resulting set of controllers back to
the physical domain. Recent theoretical work by Bamieh (1997) indicates that such
a procedure should result in spatial convolution kernels with compact support such
that the weights on sensor measurements eventually decay exponentially as a function
of distance from the actuator. This property will allow the convolution kernels to be
truncated with a prescribed degree of accuracy at a finite distance from each actuator,
resulting in implementable schemes in the physical domain. The present work sets the
stage for this development.

2.1. Continuous form of flow equations

Consider a steady plane channel flow with maximum velocity U0 and channel half-
width δ. Non-dimensionalizing all velocities by U0 and lengths by δ, the mean
velocity profile in the streamwise direction (x) may be written U(y) = 1− y2 on the
domain y ∈ [−1, 1]. The equations governing small, incompressible, three-dimensional
perturbations {u, v, w, p} to the mean flow U are given by the linearized Navier–Stokes
and continuity equations

u̇+U
∂

∂x
u+U ′v = −∂p

∂x
+

1

Re
∆u, (2.1a)

v̇ +U
∂

∂x
v = −∂p

∂y
+

1

Re
∆v, (2.1b)

ẇ +U
∂

∂x
w = −∂p

∂z
+

1

Re
∆w, (2.1c)
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∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.2)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian, Re ≡ U0δ/ν is the Reynolds
number, ν is the kinematic viscosity, dot (̇ ) denotes ∂/∂t, and prime (′) denotes
d/dy. A single equation for the normal component of velocity v, found by taking the
Laplacian of (2.1b), substituting for ∆p from the divergence of (2.1), and applying
(2.2), is

∆v̇ =
{
−U ∂

∂x
∆ +U ′

∂

∂x
+ ∆(∆/Re)

}
v. (2.3a)

The equation for the normal component of vorticity ω ≡ ∂u/∂z − ∂w/∂x, found by
subtracting ∂/∂x of (2.1c) from ∂/∂z of (2.1a), is

ω̇ =
{
−U ′ ∂

∂z

}
v +

{
−U ∂

∂x
+ ∆/Re

}
ω. (2.3b)

The flow perturbation problem in {u, v, w, p} with second-order partial derivatives in
(2.1)–(2.2) has been reduced to a problem in {v, ω} with fourth-order partial derivatives
in (2.3) with no loss of generality; essentially, the three-component velocity field has
been projected onto a two-component divergence-free manifold by eliminating the
pressure from the equations and applying continuity. Such a manipulation is standard
practice for both the present derivation (Gustavsson & Hultgren 1980) and the fully
nonlinear Navier–Stokes equation (Kim, Moin & Moser 1987).

As the domain is homogeneous in the x- and z-directions, we may Fourier transform
the solution such that

v(x, y, z, t) =
∑
kx,kz

v̂(kx, y, kz, t) exp[i(kx x+ kz z)],

ω(x, y, z, t) =
∑
kx,kz

ω̂(kx, y, kz, t) exp[i(kx x+ kz z)].

As the various Fourier modes are orthogonal and equations (2.3a) and (2.3b) are
linear, the solution for each wavenumber pair (kx, kz) is decoupled and obeys the
equations

∆ v̇ = {−i kx U ∆ + i kx U
′ + ∆(∆/Re)} v (2.4a)

ω̇ = {−i kz U
′} v + {−i kx U + ∆/Re} ω, (2.4b)

where the hat accents (ˆ) have been dropped for notational convenience and the
Laplacian now takes the form ∆ ≡ ∂2/∂y2−k2

x−k2
z . Equation (2.4a) is the well-known

(fourth-order) Orr–Sommerfeld equation for the wall-normal velocity modes, and
(2.4b) is the (second-order) equation for the wall-normal vorticity modes. Note the
one-way coupling between these two equations. Also note that, from any solution
{v, ω}, the values of u and w may be extracted by manipulation of the above equations
into the forms

u =
i

k2
x + k2

z

(
kx
∂v

∂y
− kz ω

)
and w =

−i

k2
x + k2

z

(
kz
∂v

∂y
− kx ω

)
, (2.5)

and p may be found by solution of the equation ∆p = −2i kx U
′ v. Control is applied

at the wall as a boundary condition on the wall-normal component of velocity v. The
boundary conditions on u and w are no-slip (u = w = 0), which implies that, at the
wall, ω = 0 and (by continuity) ∂v/∂y = 0.
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2.2. Discrete form of flow equations

The continuous equations for the {v, ω} perturbations in (2.4) are now discretized on
a grid of N + 1 Chebyshev–Gauss–Lobatto points in the wall-normal direction such
that

yκ = cos(πκ/N) for 0 6 κ 6 N.

An (N+1)× (N+1) matrix D may be expressed (Canuto et al. 1988, equation 2.4.31)
such that the derivative of ω with respect to y on the discrete set of N + 1 points is
given by

ω′ = Dω and ω′′ = Dω′,

where the prime (′) indicates the derivative of the vector ω with respect to y. The
homogeneous Neumann boundary condition on v is accomplished by modifying the
first derivative matrix such that

D̃ικ =

{
0, ι = 0, N

Dικ, 1 6 ι 6 N − 1.

Differentiation of v with respect to y is then given by

v′ = D̃ v, v′′ = D v′, v′′′ = D v′′ and v′′′′ = D v′′′.

With these derivative matrices, it is straightforward to write (2.4) in matrix form.
This is accomplished by first expressing the matrix form of (2.4) on all N + 1
collocation points such that†

v̇ =L v, (2.6a)

ω̇ = C v +Sω, (2.6b)

where the (N+ 1)× (N+ 1) matricesL, C, andS represent the spatial discretization
of the bracketed operations in (2.4). The Dirichlet boundary conditions are explicitly
prescribed as separate ‘forcing’ terms. To accomplish this, decompose L, C, and S
according to

L =


∗ ∗ ∗

b11 Lc b12

∗ ∗ ∗

 , C =


∗ ∗ ∗

b21 Cc b22

∗ ∗ ∗

 , S =


∗ ∗ ∗

∗ Sc ∗

∗ ∗ ∗

 ,

whereLc, Cc, and Sc are (N − 1)× (N − 1) and b11, b12, b21, and b22 are (N − 1)× 1.
Noting that ω0 = ωN = 0 by the no-slip condition, and defining

x ≡



v1

...
vN−1

ω1

...
ωN−1


, A ≡


Lc 0

Cc Sc

 , B ≡


−b11 b12

−b21 b22

 , u ≡
(
−v0

vN

)
,

† Note that, for k2
x + k2

z 6= 0, the matrix form of the left-hand side of (2.4a) is invertible, so the
form (2.6a) is easily determined.
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where x is 2(N − 1)× 1, A is 2(N − 1)× 2(N − 1), B is 2(N − 1)× 2, and u is 2× 1,
we may express (2.6) in the form

ẋ = Ax+ Bu. (2.7)

The vector x, which contains the normal velocity fluctuations vi and normal vorticity
fluctuations ωi at the grid points on the interior of the channel, is referred to as
the ‘state’. The vector u, which contains the blowing/suction velocity at the top and
bottom walls, is referred to as the ‘control’.

2.3. Wall measurements

We will consider control algorithms using both full flowfield information and wall
information only. For the latter case, we will assume that measurements made at the
wall provide information about the streamwise and spanwise skin friction, from which
(subtracting out the known influence of ∂v/∂x and ∂v/∂z from the stress tensor at
the wall) we may determine the following four quantities:

ym1 = − 1

Re

∂u

∂y

∣∣∣
upper wall

, ym2 =
1

Re

∂u

∂y

∣∣∣
lower wall

,

ym3 = − 1

Re

∂w

∂y

∣∣∣
upper wall

, ym4 =
1

Re

∂w

∂y

∣∣∣
lower wall

.

 (2.8)

With (2.5), we may express these measurements as linear combinations of v and ω.
Defining a ≡ i kx/(k

2
x + k2

z )/Re and b ≡ −i kz/(k
2
x + k2

z )/Re, the measurements are
expressed in terms of the discrete vectors v and ω as

ym1 =
(
−aDD̃ v − bDω

) ∣∣∣
upper wall

, ym2 =
(
aDD̃ v + bDω

) ∣∣∣
lower wall

,

ym3 =
(
−bDD̃ v − aDω

) ∣∣∣
upper wall

, ym4 =
(
bDD̃ v + aDω

) ∣∣∣
lower wall

.

Decompose D, D̃, and (DD̃) according to

D =


∗ c3 ∗

∗ ∗ ∗

∗ c4 ∗

 , D̃ =


∗ ∗ ∗

∗ D̃c ∗

∗ ∗ ∗

 , (DD̃) =


d1 c1 d3

∗ ∗ ∗

d2 c2 d4

 ,

where D̃c (to be used in the following section) is (N − 1)× (N − 1), c1, c2, c3, and c4

are 1× (N − 1), and d1, d2, d3, and d4 are 1× 1. Finally, defining

ym ≡

ym1

ym2

ym3

ym4

 , C ≡

 −a c1 −b c3

a c2 b c4

−b c1 −a c3

b c2 a c4

 , D ≡

 a d1 −a d3

−a d2 a d4

b d1 −b d3

−b d2 b d4

 ,

where ym is 4 × 1, C is 4 × 2(N − 1), and D is 4 × 2, allows us to express ym in the
form of a linear combination of the state x and the control u

ym = Cx+ Du. (2.9)

The vector ym is referred to as the ‘measurement’.
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2.4. Inner product, vector 2-norm, and energy density

Define the inner product for two discrete vectors u and v discretized on the collocation
points yκ = cos(πκ/N) by

(u, v) ≡
N∑
κ= 0

u∗κ vκ ζκ, where ζκ ≡


π

2N
, κ = 0, N

π

N
, 1 6 κ 6 N − 1.

Orthogonality of two vectors implies that their inner product is zero, (u, v) = 0.
The 2-norm of a vector u, denoted ||u||, is defined as the square root of (u, u). Note
that, for two vectors of the same dimension as the state vector x, which is defined
only on the interior grid points, the inner product is given simply by

(u, v) =
π

N
u∗ v, (2.10)

where star (∗) applied to a vector denotes conjugate transpose. The corresponding
inner product for two continuous complex functions u, v on the domain y ∈ [−1, 1]
is given by

(u, v) ≡
∫ 1

−1

u∗ v η dy, where η(y) ≡ (1− y2)−1/2

and the star (∗) denotes the complex conjugate. For sufficiently smooth functions u, v
on a sufficiently large number N of Chebyshev–Gauss–Lobatto grid points (Canuto
et al. 1988), this inner product of the continuous functions approximates the inner
product of the discrete vectors, (u, v) ≈ (u, v). The implication of using a discretization-
dependent weighting factor, such as η(y), to develop a control rule is discussed in
§ 6.2.

For the purpose of developing control rules, the kinetic energy density is a more
physically relevant quantity than measures derived from a (discretization-dependent)
2-norm of the discretized vector, such as that given by η(y) above. The kinetic energy
density of a flow perturbation in the physical domain is

E =
1

V

∫ 1

−1

∫ 2π/kx

0

∫ 2π/kz

0

u2 + v2 + w2

2
dz dx dy,

where V = 8π/(kxkz) is the volume of the domain under consideration. Considering
a single Fourier mode (kx, kz) and (again) dropping the hat accents (ˆ) for notational
convenience, the kinetic energy density is expressed in terms of {v̂, ω̂} as

E =
1

8

∫ 1

−1

[
v∗v +

1

k2
x + k2

z

(
∂v∗

∂y

∂v

∂y
+ ω∗ω

)]
dy.

For the discrete state vector x, this integration corresponds to

E = x∗Q x, where Q =
1

8


Ω+

1

k2
x + k2

z

D̃∗c Ω D̃c 0

0
1

k2
x + k2

z

Ω


and Ω is an (N − 1)× (N − 1) diagonal matrix with nonzero entries Ωκκ = ζκ/η(yκ),
where 1 6 κ 6 N − 1, to properly account for the integrations on the stretched mesh.
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2.5. Cases studied

It is well known that, for supercritical Re > 5772, the uncontrolled problem is
linearly unstable, with the most unstable modes occurring for flow perturbations with
kz ≈ 0, and that, for subcritical Re 6 5772, the uncontrolled problem is linearly
stable. However, transition often occurs at a Reynolds number well below that
required for linear instability of the laminar flow. Butler & Farrell (1992) show
that the non-orthogonality of the eigenmodes of subcritical flows, especially for flow
perturbations with kx ≈ 0, implies that flow perturbations of a particular initial
structure will experience large, O(Re) amplification of energy before their eventual
decay. They suggest that such transient linear amplification can sometimes lead to
flow perturbations large enough for nonlinear instability to be triggered, if such initial
conditions ever happen to be encountered. This paper will explore control techniques
which simultaneously (a) stabilize any unstable system eigenvalues, and (b) greatly
reduce the maximum transient energy growth of small flow perturbations due to non-
orthogonal system eigenvectors. The quantitative comparison of the various controlled
closed-loop systems, however, will finally be obtained by the transfer function analysis
to be described in § 4.4.

To simplify our discussion, we will restrict our attention in the remainder of this
work to one supercritical case and one subcritical case:

Case (i) Re = 10 000, kx = 1, kz = 0;
Case (ii) Re = 5000, kx = 0, kz = 2.044.

Case (i), which is supercritical, is the ‘classic’ Re = 10 000 case benchmarked by
Orszag (1971). It has been studied by several authors since, including Joshi et al.
(1997). Case (ii), which is subcritical, is the wavenumber pair that gives the maximum
transient energy growth at Re = 5000, as shown by Butler & Farrell (1992).

For case (i), kz = 0 and thus C = 0 in (2.6), entirely decoupling the ω eigenmodes
from both the v eigenmodes and from the control u = (v0, vN)T . The ω eigenmodes
are thus unaffected by the application of the control u. Fortunately, it is also found
that the ω eigenmodes are stable. Thus, for the purpose of studying the effect of the
control in case (i) (only), we may restrict our attention to the v eigenmodes according
to a reduced system with

x ≡

 v1

...
vN−1

 , A ≡

 Lc

 , B ≡

−b11 b12

 , u ≡
(
−v0

vN

)
,

where x is (N − 1)× 1, A is (N − 1)× (N − 1), B is (N − 1)× 2, and u is 2× 1, and

ym ≡

 ym1

ym2

ym3

ym4

 , C ≡

 −a c1

a c2

−b c1

b c2

 , D ≡

 a d1 −a d3

−a d2 a d4

b d1 −b d3

−b d2 b d4

 ,

where ym is 4× 1, C is 4× (N− 1), and D is 4× 2. The full dynamics of the controlled
system for case (i) is simply the dynamics of the controlled reduced system for v
together with the decoupled, stable dynamics of the uncontrolled system for ω.

For case (ii), as C 6= 0, we must use the full coupled system derived in § 2.2 and
§ 2.3. Note that case (ii), which consists of three-component {u, v, w} perturbations,
varies only in the y- and z-directions, and therefore is properly referred to (Reynolds
& Kassinos 1995) as 2D, 3C (two-dimensional, three-component). Case (i), for which
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we consider only the two-component {u, v} perturbations, varies only in the x- and
y-directions, and therefore is referred to as 2D, 2C (two-dimensional, two-component).

2.6. State disturbances and measurement noise

State disturbances of some level are inevitable in any flow. They arise from sources
such as acoustics, surface irregularities, vibrations of the wind-tunnel walls, etc.
Measurement noise of some level is also inevitable. It arises from inaccuracies of the
sensors and from the electronics processing their signals. These phenomena are now
accounted for in a general form. The simple assumptions used to solve the problem
here may be refined as more information is learned about particular flows of interest.

Define G1 as the square root of the expected covariance of the state disturbances to
be added to (2.7) and G2 as the square root of the expected covariance of measurement
noise to be added to (2.9). Note that G1 and G2 are time invariant, and it can be
assumed that G2 is non-singular due to the inevitability of noise in measurements.
In the present problem, as nothing yet is known about the state disturbances or
measurement noise a priori, they are assumed to have the simple covariances

G1 ≡ I and G2 ≡ α I ⇒ αG−1
2 = I .

The parameter α2 is defined as the ratio of the maximum singular value, σmax, of the
covariance of the measurement noise to the maximum singular value of the covariance
of the state disturbances,

α2 ≡ σmax(G
2
2 )

σmax(G
2
1 )
,

and the problem is normalized such that σmax(G
2
1 ) = 1. Known structure of these co-

variances (for example, if one sensor is known to be noisier than another) is accounted
for by replacing the identity matrices in the above expressions with appropriate ma-
trices of unit maximum singular value, retaining the quantity α to reflect the balance
between the magnitudes of the two types of disturbances†.

The disturbed system under consideration may be written

ẋ = Ax+ G1w1 + Bu,

ym = Cx+ G2w2 + Du.

The controllers developed in this work will rigorously account for the state dis-
turbances G1w1 and the measurement noise G2w2. These ‘disturbances’, as they shall
generically be referred to, are considered both in a Gaussian sense and in a worst-case
sense; the present system definition is convenient for the consideration of both types
of disturbances.

When optimizing the system response to disturbances with a Gaussian structure, as
any covariance of the disturbances known in advance is accounted for in G1 and G2,
the external signals w1 and w2 are taken as uncorrelated, zero-mean, white Gaussian
processes with covariance E[w1 w

∗
1 ] = I , E[w2 w

∗
2 ] = I . Note that, for the present

system, the expectation value may be written

E[·] = lim
T→∞

1

T

∫ T

0

[·] dt.

† This scaling of the problem is used because it turns out to be quite convenient in the derivation
of the H∞ estimator in the development to follow. Note that the definition of α is based on the
ratio of maximum singular values of the covariance matrices; the maximum singular value is also
referred to as the induced matrix 2-norm, i.e. ||G2

2 ||2 ≡ σmax(G2
2 ).
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When optimizing the system response to worst-case disturbances, as, again, any
covariance of the disturbances known in advance is accounted for in G1 and G2, no
disturbance structure is assumed at all. Instead, a finite ‘unstructured’ disturbance is
found which maximizes a cost function representing the control objective. Simultane-
ously, a controller is found which minimizes the same cost function in the presence
of this disturbance. This is the essence of non-cooperative game theory, and will be
discussed further in § 3.

To account for disturbances in a more tractable manner in the control theory,
define a new ‘observation’ vector y by a simple change of variables such that

y ≡ αG−1
2 (ym − D u).

The observation y is easily determined from the flow measurements. Also, define

B1 ≡
(
G1 0

)
, B2 ≡ B , C2 ≡ αG−1

2 C , D21 ≡
(
0 α I

)
, w ≡

(
w1

w2

)
.

The system is then written in the standard form

ẋ = A x + B1 w + B2 u,

y = C2x+ D21w.
(2.11)

3. Application of control theory and numerical method
3.1. Summary of control approach

In § 2, it was shown that the equations governing small flow perturbations in a laminar
channel flow may be expressed in the standard form

ẋ = A x + B1 w + B2u, (3.1a)

y = C2x+ D21w. (3.1b)

A simple method is sought to ‘close the loop’ to stabilize the system; i.e. to determine
a control u based on the observations y to force the state x towards zero in a
manner which rigorously accounts for the disturbances w. A system model with a
structure similar to the system (3.1) itself, but without the influence of the unknown
disturbances, is used for this purpose such that

˙̂x = A x̂+ B2u− û, (3.2a)

ŷ = C2x̂, (3.2b)

with feedback û based on the difference between the observations of the state y and
the corresponding quantity in the model ŷ such that

û = L(y − ŷ). (3.2c)

The control u, in turn, is based on the state estimate x̂ such that

u = Kx̂. (3.3)

Equation (3.1), is referred to as the ‘plant’, (3.2) is referred to as the ‘estimator’,
and (3.3) is referred to as the ‘controller’. The problem at hand is to compute linear
time-invariant (LTI) matrices L and K such that (i) the estimator feedback û forces
the state estimate x̂ in the estimator towards the state x in the plant, and (ii) the
controller feedback u forces the state x towards zero in the plant.
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The flow of information is illustrated schematically in the following block diagram.

plant

estimator

controller

disturbances
w

observation
y

state estimate
x̂

control
u

The plant, forced by external disturbances, has an internal state x which cannot be
observed. Instead, a noisy observation y is made and an estimate of the state x̂
determined. This state estimate is then fed through the controller to determine the
control u to be applied on the plant to regulate x to zero.

Several recent references describe in detail how H2 (‘optimal’) and H∞ (‘robust’)
techniques determine L and K for systems of the form (3.1)–(3.3) in the presence
of structured and unstructured disturbances w. The reader is referred in particular
to Doyle et al. (1989), Dailey et al. (1990), Green & Limebeer (1995), and Zhou,
Doyle & Glover (1996) for further discussion of these control theories, and Bewley
& Agarwal (1996) for a tutorial in the context of the current problem. To summarize
briefly, a cost function J describing the control problem at hand is defined that
weighs together the state x, the control u, and the disturbance w such that

J ≡ E
[
x∗Q x+ `2 u∗u− γ2 w∗w

]
= E

[
z∗ z − γ2 w∗w

]
, (3.4a)

where

z = C1x+ D12u (3.4b)

with

C1 ≡
(
Q1/2

0

)
, D12 ≡

(
0
` I

)
.

This cost function is minimized with respect to the control u and maximized with
respect to the disturbance w. For sufficiently large γ and a stabilizable, detectable
system (as defined in § 4.1), this results in finite values for both u and w, the magnitudes
of which are governed by the three scalars {γ, α, `}. Recall that α2, defined earlier,
quantifies the relative level to which the observation y is corrupted by measurement
noise.

The parameter `2 may be interpreted as the ‘price’ of the control. The ` → ∞
limit, which corresponds to ‘expensive control’, results in the smallest possible u which
stabilizes the system, i.e. makes E[ x∗Q x ] finite. Reduced values of ` penalize the
cost function less upon the application of control, and thereby tend to result in a
larger control magnitude E[ u∗ u ] and a smaller energy density of the state E[ x∗Q x ].
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Consider the min/max problem just described as a differential game between a fluid
dynamicist seeking the ‘best’ control u which stabilizes the flow perturbation with
limited control effort and nature seeking the ‘maximally malevolent’ small disturbance
w which destabilizes the flow perturbation (Green & Limebeer 1995, p. 218). The
parameter γ2 factors into such a competition as a weighting on the magnitude of the
disturbance which nature can afford to offer, in a manner analogous to the parameter
`2, which is a weighting on the magnitude of the control which the fluid dynamicist
can afford to offer. The negative sign on the term involving γ2 is necessary because the
cost function is maximized with respect to the disturbance w, while it is minimized
with respect to the control u. The γ → ∞ limit, referred to as the H2 solution,
removes the disturbance ‘player’ from the non-cooperative game between u and w
(i.e. w → 0 in the maximization). This limit may also be interpreted as assuming the
disturbance w is white and uncorrelated with the control applied, i.e. E[ww∗ ] = I
and E[w u∗ ] = 0, which implies that the problems of control and estimation in the
H2 limit are decoupled. Reduced values of γ introduce a ‘maximally malevolent’
disturbance w of increased magnitude relative to the magnitude of the control u.

Solving for the feedback which is effective even in the presence of such malevolent
disturbances achieves system robustness. In the present systems, for γ < γ0 for some
critical value γ0 (which may be found by trial and error), the non-cooperative game
does not have a finite solution; essentially, nature wins. The feedback corresponding
to γ = γ0 results in a stable system even when nature is on the brink of making the
system unstable. This is sometimes referred to as the ‘optimal’ H∞ feedback, as it is
the feedback which is ‘most robust’. However, the ‘optimal’H∞ feedback is generally
not the most suitable choice overall, as discussed in § 6.1.1 and § 6.1.2.

The parameter γ in the min/max problem formulated above in the time domain
is also, it turns out, an upper bound on the ∞-norm of the transfer function from
the disturbance w to the performance measure z in the frequency domain, defined
precisely in § 4.4 and denoted ||Tzw||∞ (Zhou et al. 1996). Thus, by reducing γ to
the minimum values possible (γ0) when computing the estimator feedback matrix L
and the controller feedback matrix K , the most restrictive bounds on ||Tzw||∞ in the
resulting closed-loop systems are attained.

An estimator/controller which minimizes J in the presence of that disturbance
which simultaneously maximizes J is given by the estimator feedback

L = − 1

α2
Y C∗2 , where Y = Ric

 A∗
1

γ2
C∗1 C1 −

1

α2
C∗2 C2

−B1 B
∗
1 −A

 , (3.5)

and the controller feedback

K = − 1

`2
B∗2 X , where X = Ric

 A
1

γ2
B1 B

∗
1 −

1

`2
B2 B

∗
2

−C∗1 C1 −A∗

 , (3.6)

where Ric(·) denotes the solution of the associated Riccati problem (Doyle et al. 1989).
Standard numerical techniques to solve equations of this form are well developed
(Laub 1991). Solutions to these Riccati problems exist only for sufficiently large γ at
given values of ` and α. As previously stated, the smallest γ = γ0 for which solutions
to these equations exist may be found by trial and error.
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3.2. Comparison of optimal and robust control

Most of the robustness problems associated with H2 stem from the state estimation.
Optimal controllers provided with full state information (i.e. without estimators)
generally have excellent performance and robustness properties (Dailey et al. 1990).
Note that the problems of control and state estimation in the H2 formulation
(γ → ∞) are decoupled. Other than the system matrix A, K depends only upon
{`,B2,C1}, and L depends only upon {α,B1,C2}. This is a result of the celebrated
Separation Principle of the H2 formulation (Green & Limebeer 1995; Lewis &
Syrmos 1995).

An important observation is that the problems of control and state estimation
in the H∞ formulation are coupled. Specifically, the computation of K in (3.6)
depends on the expected covariance of the state disturbances, which are accounted
for in B1, and the computation of L in (3.5) depends on the weightings in the cost
function, which are accounted for in C1. This is one of the essential features of H∞
control.

The H∞ controller takes into account the expected covariance of the state distur-
bances, reflected in B1, when determining the state feedback matrix K . By so doing,
the components of x that are expected to have the largest excitation by external
disturbances are forced with the largest feedback by the relationship u = K x̂ in the
equation for the controller.

Similarly, theH∞ estimator takes into account the weightings in the cost function,
reflected in C1, when determining the estimator feedback matrix L. By so doing, the
components of x̂ corresponding to the components of x that are most important in
the computation of the cost function are forced with the largest feedback by the
relationship û = L(y − ŷ) in the equation for the estimator.

By applying strong control only to those components of x significantly excited by
external disturbances (by keeping ` large and reducing γ), and by applying strong
estimator corrections only to those components of x̂ important in the computa-
tion of the cost function (by keeping α large and reducing γ), H∞ feedback gains
for components of the system not relevant to the control problem at hand may
be kept at a minimum. With such feedback gains kept small, the stability prop-
erties of H∞ estimator/controllers in the presence of system uncertainties may be
dramatically improved over H2 counterparts which, for an equivalent worst-case
response of the nominal plant, require reduced values of ` and α and, therefore,
larger feedback gains. The reduced feedback applied in the H∞ approach results
in reduced opportunity for improper feedback to disrupt the closed-loop system.

3.3. Comparison with proportional control

A single-input, single-output (SISO) proportional controller for the present regulation
problem is one which computes a single control variable simply by multiplying a single
flow measurement by a complex scalar. In a slightly more general form, a multiple-
input, multiple-output (MIMO) proportional controller computes each component of
the control by a simple linear combination of multiple flow measurements, as shown
in the following block diagram.
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plant

controller

disturbances

measurement
ym

control
u

A proportional controller for the present problem takes the form u = Kym, where
the (complex) elements of K must be determined by parametric variation. It may be
argued that the streamwise velocity fluctuations are more important than the span-
wise velocity fluctuations in both case (i) and case (ii). Further, one can easily apply
control at both walls based on local measurements of streamwise skin friction only.
Thus, it is reasonable to consider two SISO proportional controllers for the present
problem put together in a restricted MIMO form

u =

(
k1 eiφ1 0 0 0

0 k2 eiφ2 0 0

)
ym ≡ Kym, (3.7)

where the ki and φi are chosen by parametric variation. It is found by such a
parametric variation that φi = 0 is most effective in this framework, and that the best
performance is obtained near k1 = k2 = 60 for case (i) and k1 = k2 = 10 for case (ii).
These restricted MIMO proportional controllers will be used as a basis for comparison
in the analysis of the estimator/controllers based on modern control theory in § 6.

More general forms for K in a proportional controller may be considered, but, as the
dimension of the problem grows, searching parametrically for effective Kij becomes
intractable, and the benefit of an approach based on control theory to determine the
feedback matrices becomes apparent. With the present theory, the feedback matrices
for systems of arbitrary dimension are developed as a function of just three scalar
parameters {γ, α, `}, each of which may be intuitively understood and individually
adjusted to achieve desired system characteristics.

3.4. Numerical method

Standard numerical techniques are now applied to the control problem posed in
(3.1)–(3.6). The algebraic Riccati equations are solved using the method of Laub
(1991), which involves a Schur factorization. This is found to be a stable numerical
algorithm for all cases tested. The implementation of Laub’s method is written in
Fortran 90 and follows closely the algorithm used by the Matlab function are.m
(Grace et al. 1992). A Lyapunov solver, modelled after the Matlab function lyap.m,
is also used. Two LAPACK routines (Anderson et al. 1995), zgeev.f and zgees.f,
are used to compute eigenvalues/eigenvectors and Schur factorizations.

All routines are compiled in quad precision (128 bits per real number) to ensure
sufficient numerical precision in the eigenvalue computation. Computations are carried
out with N = 140 for case (i) and N = 70 for case (ii) to ensure good resolution of
all significant eigenmodes. The eigenvalues of A for case (i) in table 1 match those
tabulated by Orszag (1971) to eight significant figures, and the maximum transient
energy growth for case (ii) in figure 3(b) matches that obtained by Butler & Farrell
(1992) to four significant figures, indicating that the present numerical method is
sufficiently accurate.
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3.4.1. Spurious eigenmodes

It is a well-known computational challenge that, in addition to all of the well-
resolved eigenmodes of a particular continuous PDE, several poorly resolved eigen-
modes inevitably result from the solution of a discrete matrix eigenvalue problem.
Such spurious eigenmodes are sometimes referred to as ‘two-delta waves’ because their
dominant wavelength is approximately twice the local grid spacing. Unfortunately, the
(spurious) eigenvalues of these poorly resolved eigenmodes may be near the (valid)
eigenvalues of the well-resolved eigenmodes, even though the spurious modes are
physically meaningless. For example, the first spurious eigenvalue computed for case
(i) with N = 140 occurs at λ = −0.0235 + 1.520 i. Spurious eigenmodes may be iden-
tified easily in two ways: (i) the eigenvalue λ moves significantly when N is modified
slightly, though the remaining eigenvalues remain converged to all significant figures,
and (ii) when plotted, spurious eigenvectors ξ are characterized by large oscillations
from grid point to grid point across the domain, though converged eigenmodes are
well resolved, as depicted in figure 1(b) in § 5.

Inclusion of spurious eigenmodes in the system matrix A to be controlled may cause
problems when applying control theory to modify the closed-loop characteristics of the
entire system, as these modes may be uncontrollable and/or unobservable. In order
to ensure problems related to these modes do not arise, the spurious eigenmodes of
A are identified, the corresponding eigenvalues modified to a ‘benign’, well-damped
location, and the system matrix reconstructed according to

Amodified = ΞΛmodified Ψ
∗. (3.8)

Note that Λmodified is the matrix of eigenvalues with the eigenvalues corresponding to
spurious modes moved to λκ = −500, and Ψ and Ξ are the corresponding left and
right eigenvector matrices. This ensures that the dynamics of these spurious modes
are damped sufficiently to be insignificant with respect to the rest of the system. The
modified matrix Amodified is implied by the symbol A in the remainder of this work.

A minimal realization approach (Kailath 1980) is well suited to greatly reduce the
dimension of the matrices and vectors involved, and thus the computer time needed, in
the present computations. With this approach, uncontrollable, unobservable, spurious,
and highly damped modes may be removed altogether from the representation of
the system to be controlled. This idea will be explored in future work. The purpose
of the present work, however, is to study the effects of control and estimation on
the entire locus of eigenvalues in a well-resolved implementation. Thus, the matrix
A is considered with no modifications beyond the damping of the spurious modes
as described above. Note that, though controllers may be designed based on reduced
systems, they must always be analysed based on the complete system to accurately
characterize system behaviour.

4. Methods of analysis
This Section reviews four methods to analyse various properties of a generic system

˙̃x = Ã x̃ + B̃1 w̃ + B̃2 ũ, (4.1a)

z̃ = C̃1x̃ + D̃12ũ, (4.1b)

ỹ = C̃2x̃+ D̃21w̃. (4.1c)



Optimal and robust control and estimation of linear paths to transition 321

The methods of analysis presented in this Section are applied to the present flow
transition problem for the open-loop systems in § 5 and the closed-loop systems in § 6
by appropriate definition of the above tilde (̃ ) variables in the respective sections. It is
therefore instructive to first review the analysis techniques from a generic perspective.

In § 4.1, the controllability and observability system Gramians are reviewed as a
means to characterize the system as a whole. However, this approach alone does
not characterize the stabilizability of uncontrollable systems or the detectability
of unobservable systems. As shown in § 4.2, it is useful to analyse the individual
eigenmodes of the system under consideration separately, and to identify the degree
to which each of these modes may be modified by the control and the sensitivity
with which each may be detected by the observations. Non-orthogonality of the
eigenmodes is reviewed in § 4.3 as a method by which transient energy growth is
possible in stable systems, and a method is discussed by which the maximum possible
transient energy growth may be quantified. In § 4.4, quantitative measures of the effects
of both Gaussian and worst-case disturbances w̃ on a relevant performance measure
z̃ are described. In § 4.5, it is shown that all four methods of analysis presented in this
Section are immediately applicable to open-loop systems, closed-loop controllers with
full state information, closed-loop estimators with no control, and composite closed-
loop estimator/controller systems by appropriate definition of the tilde (̃ ) variables
in (4.1).

4.1. System Gramians

We first address whether or not all of a given system’s eigenmodes may be altered
by the control ũ, and whether or not all of these eigenmodes may be discerned with
the observations ỹ. To accomplish this, it is standard practice (Lewis & Syrmos 1995)
to consider two matrices which characterize the controllability and observability of
the system (4.1) as a whole, assuming for the moment that w̃ = 0. These are the
system controllability Gramian Lc of (Ã, B̃2) and the system observability Gramian Lo
of (C̃2, Ã), which may be found by solution of

Ã Lc + Lc Ã
∗

+ B̃2 B̃
∗
2 = 0,

Ã
∗
Lo + Lo Ã+ C̃∗2 C̃2 = 0.

Stable numerical techniques to solve equations of this form, referred to as Lyapunov
equations, are well developed (Bartels & Stewart 1972).

If Lc is (nearly) singular, there is at least one eigenmode of the system which is
(nearly) unaffected by any choice of control ũ, and the system is called ‘uncontrollable’.
If all uncontrollable eigenmodes are stable, and the dynamics of the system may be
made stable by the application of controller feedback, the system is called ‘stabilizable’.

Similarly, if Lo is (nearly) singular, there is at least one eigenmode of the system
which is (nearly) indiscernible by the observations ỹ, and the system is called ‘unob-
servable’. If all unobservable eigenmodes are stable, and the dynamics of the error of
the estimate may be made stable by the application of estimator feedback, the system
is called ‘detectable’.

System Gramians alone do not identify which of the eigenmodes are unaffected
by ũ or indiscernible by ỹ. Thus, determination of whether or not an uncontrollable
system is stabilizable or an unobservable system is detectable requires further analysis.
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4.2. Eigenmode analysis

Modal canonical form (Kailath 1980) will now be used to quantify the sensitivity of
each individual eigenmode of a system matrix Ã to both control and observation.
Though this is common practice in linear systems theory (Skogestad & Postlethwaite
1996, pp. 122 and 126) a brief review helps establish two scalars, denoted here fκ and
gκ, which indicate the controllability and observability of each individual eigenmode
of the system.

Define the eigenvalues λκ and the left and right eigenvectors, ψκ and ξκ, and the
corresponding eigenvalue and eigenvector matrices†, such that:

left eigenvectors: ψ∗κ Ã = λκ ψ
∗
κ ⇒ Ψ ∗ Ã = ΛΨ ∗,

right eigenvectors: Ã ξκ = λκ ξκ ⇒ ÃΞ = Ξ Λ,

where

Λ =

λ1

λ2

. . .

 , Ψ∗ =
( π
N

)1/2

 ψ∗1
ψ∗2
...

 , Ξ =
( π
N

)1/2

ξ1 ξ2 · · ·

 .

The system ˙̃x = Ãx̃ is stable if Re(λκ) < 0 for all κ. For systems (such as the present)
with distinct eigenvalues, the (mutually orthogonal) left and right eigenvectors may
be normalized such that

(ξκ, ξκ) = 1 and (ψι, ξκ) = δικ ⇒ Ψ∗ Ξ = I . (4.2)

Note that the right eigenvectors ξκ themselves are linearly independent but not
orthogonal; i.e. (ξι, ξκ) 6= 0 for ι 6= κ. Any x̃ may be uniquely decomposed via a
projection vector χ as a linear combination of these nonorthogonal right eigenvectors
such that

x̃ = Ξχ =
∑
κ

χκ ξκ ⇒ ˙̃x = Ξ χ̇ =
∑
κ

χ̇κ ξκ. (4.3)

4.2.1. Definition of modal control residual

By (4.1a) and (4.3) and assuming, for the moment, that w̃ = 0, we have∑
κ

χ̇κ ξκ = Ã
∑
κ

χκ ξκ + B̃2 ũ =
∑
κ

χκ λκ ξκ + B̃2 ũ.

Taking the inner product with ψι(
ψι,
∑
κ

χ̇κ ξκ

)
=

(
ψι,
∑
κ

χκ λκ ξκ

)
+ (ψι, B̃2 ũ)

and noting (2.10) and (4.2) yields

χ̇κ = λκ χκ +
π

N
(B̃∗2 ψκ)

∗ ũ.

If the vector (π/N)B̃∗2 ψκ = 0, then χ̇κ = λκ χκ for any ũ. In other words, the component
of x̃ parallel to ξκ is not affected by the control ũ, and the eigenmode is said to be

† The (π/N)1/2 term in the definition of Ξ and Ψ is required to maintain consistency with the
definition of an inner product which converges upon refining N, as discussed in § 2.4.
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‘uncontrollable’. Further, the 2-norm of the vector (π/N)B̃∗2 ψκ,

fκ =
π

N

(
ψ∗κ B̃2 B̃

∗
2 ψκ

)1/2
, (4.4)

termed here the ‘control residual’ of mode κ, is a quantitative measure of the sensitivity
of the eigenmode κ to the control ũ. Note the dependence of this expression on
the matrix B̃2 B̃

∗
2 , which is the matrix which drives the Lyapunov equation for

controllability Gramian Lc.

4.2.2. Definition of modal observation residual

By (4.1c) and (4.3) and assuming, for the moment, that w̃ = 0, we have

ỹ =
∑
κ

χκ C̃2 ξκ.

If the vector C̃2 ξκ = 0, then ỹ will not be a function of χκ. In other words, the
component of x̃ parallel to ξκ does not contribute to the observations ỹ, and the
eigenmode is said to be ‘unobservable’. Further, the (scaled) 2-norm of the vector
C̃2 ξκ,

gκ = Re
(
ξ∗κ C̃

∗
2 C̃2 ξκ

)1/2
, (4.5)

similarly termed the ‘observation residual’ of mode κ, is a quantitative measure
of the sensitivity of the observation ỹ to eigenmode κ. Note the dependence of
this expression on the matrix C̃∗2 C̃2, which is the matrix which drives the Lya-
punov equation for observability Gramian Lo. Note also that the scaling Re is used
simply for numerical convenience.

4.3. Transient energy growth

Consider an initial state x̃(0) of a stable system which may be decomposed into
several constituent non-orthogonal eigenmodes which destructively interfere in such
a way that the energy of the initial state E(0) = x̃∗(0)Q x̃(0) is small. Such destructive
interference may reduce in time as some eigenmodes decay more quickly than others.
This can result in a large transient growth in the kinetic energy density E(t) of the
state before an eventual exponential decay of energy at the rate of the least-stable
constituent eigenmode.

Over a particular time interval τ, the shape of the most amplified initial condi-
tions x̃(0) may be found by a variational formulation (Butler & Farrell 1992). As
introduced in (4.3), a state x̃(0) may be decomposed onto the eigenvector matrix Ξ
via a projection vector χ. Solving the system of simple ODEs resulting from appli-
cation of (4.3) to (4.1a), assuming for the moment that ũ = w̃ = 0, x̃(t) may be
written

x̃(t) = Ξ eΛt χ,

where the projection χ is independent of time. The initial state x̃(0) maximizing energy
growth at t = τ may be found by considering the cost function

JE = E(τ)− θ [E(0)− 1]

= x̃∗(τ)Q x̃(τ)− θ [x̃∗(0)Q x̃(0)− 1]

= χ∗ (eΛ
∗τ Ξ∗Q Ξ eΛτ) χ− θ [χ∗ (Ξ∗Q Ξ) χ− 1],
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setting the derivative with respect to the Lagrange multiplier θ equal to zero

∂JE
∂θ

= 0 ⇒ E(0) = 1

and the gradient with respect to the projection vector χ equal to zero

∂JE
∂χ

= 0 ⇒ (eΛ
∗τ Ξ∗Q Ξ eΛτ) χ = θ (Ξ∗Q Ξ) χ

⇒ θ =
E(τ)

E(0)
=
χ∗ (eΛ

∗τ Ξ∗Q Ξ eΛτ) χ

χ∗ (Ξ∗Q Ξ) χ
.

The first condition normalizes the energy of the initial state. The second condi-
tion results in a generalized eigenproblem of the form R χ = θ S χ, whose maxi-
mum eigenvalue θmax corresponds to the maximum energy growth E(τ)/E(0) by the
corresponding initial state x̃(0) = Ξχmax. A search routine may be used to find
the time interval τ for which this approach leads to the greatest possible energy
growth.

4.4. Transfer function norms

Quantitative measures of the effects of both Gaussian and worst-case disturbances w̃
on relevant performance measures z̃ are sought to characterize the various systems.
The 2-norm and the ∞-norm of the transfer function from w̃ to z̃, which we shall call
here Tz̃w̃, are commonly used for this purpose.

Taking the Laplace transform of the generic system (4.1), assuming for the moment
that ũ = 0, it is easy to determine the transfer function Tz̃w̃(s) from w̃(s) to z̃(s) (the
Laplace transforms of w̃ and z̃) such that

z̃(s) = C̃1 ( s I − Ã )−1 B̃1 w̃(s) ≡ Tz̃w̃(s) w̃(s).

Norms the transfer function Tz̃w̃(s), also referred to as system norms, quantify how
relevant performance measures z̃ respond to disturbances w̃ in the present systems, as
shown below. These norms turn out to be finite for allH2- andH∞-controlled systems
considered here, but not for the proportionally controlled systems, as explained in
detail in § 4.6.

4.4.1. Transfer function 2-norms

The 2-norm of a stable transfer function Tz̃w̃(s) may be defined (Doyle et al. 1989)
as

||Tz̃w̃||22 ≡
1

2π

∫ ∞
−∞

trace
[
Tz̃w̃(jω)∗Tz̃w̃(jω)

]
dω. (4.6)

It is finite when Ã is stable (i.e. all of the eigenvalues of Ã have negative real part)
and Tz̃w̃(jω) is ‘strictly proper’ (i.e. when Tz̃w̃(jω)→ 0 as ω →∞).

The norm ||Tz̃w̃||2 is a very useful measure, as it is exactly the expected r.m.s. value
of the output z̃, i.e. ||Tz̃w̃||22 = E[ z̃∗ z̃ ], when the input w̃ is a unit variance white
Gaussian process. The 2-norm of Tz̃w̃ may be found by solving a Lyapunov equation

Ã
∗
Lo + Lo Ã+ C̃∗1 C̃1 = 0 ⇒ ||Tz̃w̃||22 = trace(B̃∗1LoB̃1).

As stated previously, stable numerical techniques to solve Lyapunov equations are
well developed (Bartels & Stewart 1972).
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4.4.2. Transfer function ∞-norms

The ∞-norm of a stable transfer function Tz̃w̃ may be defined (Doyle et al. 1989) as

||Tz̃w̃||∞ ≡ sup
ω

σmax

[
Tz̃w̃(jω)

]
with σmax ≡ maximum singular value. (4.7)

It is finite when Ã is stable (i.e. all of the eigenvalues of Ã have negative real part)
and Tz̃w̃(jω) is ‘semi-proper’ (i.e. when Tz̃w̃(jω) is finite as ω →∞).

The norm ||Tz̃w̃||∞ is very useful, as it is a measure of the ‘worst case’ amplification
of the disturbance w̃ by the system. Unfortunately, the ∞-norm of Tz̃w̃ must be sought
by an iterative search. The approach used here, suggested by Doyle et al. (1989), is

(a) guess a value of γ;

(b) compute the eigenvalues of the Hamiltonian H =

 Ã
1

γ2
B̃1B̃

∗
1

−C̃∗1 C̃1 −Ã∗

 ,

(c) ||Tz̃w̃||∞ < γ iff H has no eigenvalues on the imaginary axis and H ∈ dom(Ric).
(See Doyle et al. 1989 for definition of the latter property.) Thus, we may increase
or decrease γ accordingly, using a golden section search, and repeat from (b)
until bounds on ||Tz̃w̃||∞ reach a desired tolerance.

4.4.3. Performance measures z̃ to be considered

For the characterization of the present closed-loop systems, two separate perfor-
mance measures z̃ will be considered. The first performance measure z̃1, obtained by
setting C1 = Q1/2 and D12 = 0 (and thus z̃∗1 z̃1 = x∗Q x), allows us to evaluate the
norms of the transfer function from the disturbance w to the energy of the state
x. For notational convenience, the transfer function from the disturbance w to the
performance measure z̃1 is denoted Txw in the remainder of this work.

The second performance measure z̃2, obtained by setting C1 = 0 and D12 = I (and
thus z̃∗2 z̃2 = u∗ u), allows us to evaluate the norms of the transfer function from the
disturbance w to the control u. For notational convenience, the transfer function from
the disturbance w to the performance measure z̃2 is denoted Tuw in the remainder of
this work. Note that, since z∗ z = x∗Q x + `2 u∗u by (3.4), it follows that the 2-norm
of the transfer function from the disturbance to the performance measure z actually
used in the computation of the controller is just

||Tzw||22 = ||Txw||22 + `2||Tuw||22. (4.8)

4.5. Systems to be analysed

Four systems are now described and algebraically manipulated into the generic system
form (4.1) presented at the beginning of this Section. By so doing, any of the analysis
techniques described above may be readily applied to any of the systems described
below simply by appropriate definition of the tilde (̃ ) variables in (4.1). This versatile
analysis approach is exploited in subsequent Sections to characterize the open-loop
and closed-loop systems, and is a significant design advantage of modern control
theory.
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System 1. Open-loop plant ((3.1) with (3.4b)):

ẋ = A x+ B1 w + B2 u,

z = C1x + D12u,

y = C2x+ D21w.

(4.9)

System 2. Closed-loop plant with controller and full state information ((3.1) with
(3.4b) and (3.3) augmented with extra control feedback term u′, assuming x̂ = x):

Plant:

{
ẋ = A x+ B1w + B2 u,

z = C1 x + D12 u,

Controller: { u = K x+ u′.

Simple algebraic manipulation yields the generic form for analysis:

ẋ = (A+ B2K) x+ B1 w + B2 u
′,

z = (C1 + D12K) x + D12 u
′,

y ≡ x.

(4.10)

System 3. Closed-loop plant with estimator and no control ((3.1) and (3.2) aug-
mented with extra estimator feedback term û′, assuming u = 0):

Plant:

{
ẋ = A x+ B1 w,

y = C2 x+ D21 w,

Estimator:


˙̂x = A x̂− û,
ŷ = C2 x̂,

û = L (y − ŷ) + û′.

Defining xE as the state estimation error xE ≡ x− x̂ and and yE as the measurement
error yE ≡ y − ŷ, simple algebraic manipulation yields the generic form for analysis:

ẋE = (A+ LC2) xE + (B1 + LD21)w + û′,

zE ≡ C1 xE,

yE = C2 xE + D21 w.

(4.11)

System 4. Closed-loop plant with estimator and controller ((3.1) with (3.4b), (3.2)
and (3.3) augmented with extra control feedback term u′):

Plant:


ẋ = A x+ B1 w + B2 u,

z = C1 x + D12u,

y = C2 x+ D21w,

Estimator:


˙̂x = A x̂− û+ B2u,

ŷ = C2 x̂,

û = L (y − ŷ),

Controller: { u = K x̂+ u′.
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Simple algebraic manipulation yields the generic form for analysis:(
ẋ
ẋE

)
=

(
A+ B2K −B2 K

0 A+ LC2

)(
x
xE

)
+

(
B1

B1 + LD21

)
w +

(
B2

0

)
u′,

z =
(
C1 + D12K −D12K

) ( x
xE

)
+ D12 u′,

yE =
(
0 C2

) (
x
xE

)
+ D21 w.

(4.12)

4.6. Analysis of semi-proper proportionally controlled systems

When a proportional controller, such as that proposed in § 3.3, is applied to the
present problem, the resulting system may be written in the form

ẋ = A x + B1 w + B2 u, (4.13)

z = C1 x + D12u, (4.14)

ym = C2 x + D21w + D22u, (4.15)

u = K ym, (4.16)

with K of a simple form, such as that in (3.7). Combining to eliminate u and ym gives

ẋ = [A + B2 (I − K D22)
−1K C2] x + [B1 + B2(I − K D22)

−1K D21]w,

z = [C1 + D12(I − K D22)
−1K C2] x+ [D12 (I − K D22)

−1K D21] w,

which we may write more simply as

ẋ ≡ Ã x + B̃1 w,

z ≡ C̃1x+ D̃11w.

The eigenvalues and eigenvectors of Ã may be examined to characterize the behaviour
of the closed-loop system in the absence of disturbances w and quantify the maximum
transient energy growth using the techniques of § 4.2 and § 4.3.

Given this type of control, the transfer function from w(s) to z(s) is now

z(s) = [C̃1 ( s I − Ã )−1 B̃1 + D̃11]w(s) ≡ Tzw(s)w(s).

Setting C1 = Q1/2 and D12 = 0, and thus z∗ z = x∗Q x (our first performance measure),
the norms of the transfer function from the disturbance w to the energy of the state
x, ||Txw||2 and ||Txw||∞, can be evaluated using the techniques of § 4.4. Note that, in
this case, D̃11 = 0.

Setting C1 = 0 and D12 = I , and thus z∗ z = u∗ u (our second performance measure),
we see that the transfer function from the disturbance w to the control u is not ‘strictly
proper’ (Skogestad & Postlethwaite 1996, p. 5), as there is a direct feedthrough term
from the disturbance w to the control u; in this case, D̃11 6= 0. As there is a term of
Tuw(s) which is constant for all s, the system is termed ‘semi-proper’, and thus, by its
definition in (4.6), it is clear that ||Tuw||2 = ∞.

The main point here is that a controller with a proportional component, such as
the PI controller proposed by Joshi et al. (1997), will not have built-in high-frequency
roll-off of the controller response, and measurement noise will feed directly through
to the controller input. Thus, the r.m.s. value of the control u in response to a
unit variance white Gaussian disturbance w is infinite. In practice, limitations in
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the response of the actuators and the controlling electronics would limit the r.m.s.
response of a proportional controller to white-noise disturbances. An ad hoc low-pass
filter is required to achieve high-frequency roll-off of the proportional component of
a PI controller below those frequencies set by the implementation hardware itself.
An advantage of the optimal and robust approaches developed in this paper is
that the resulting systems are strictly proper, and thus an appropriate amount of
high-frequency roll-off is built-in as a natural result of the control formulation (i.e.
Tzw(jω) → 0 appropriately quickly as ω → ∞). Simulations of the idealized optimal
and robust closed-loop systems developed in this article can be used to determine
what high-frequency performance of the implementation hardware is necessary for
the desired performance of a given system.

5. Analysis of uncontrolled, open-loop system
The uncontrolled (‘open-loop’) system is now examined in detail using the methods

of analysis of § 4 by consideration of system 1 in § 4.5.

5.1. System Gramians

For both case (i) and case (ii) of the present system, the smallest eigenvalues of both
system Gramians, Lc and Lo, are computed to be near machine zero, indicating that
these systems are both uncontrollable and unobservable. To obtain information on
stabilizability and detectability, analysis of the individual eigenmodes is necessary.

5.2. Eigenmode analysis

5.2.1. Eigenmode analysis of case (i)

The least-stable eigenvalues of A for case (i) are plotted in figure 1(a) and tabulated,
along with the corresponding control and observation residuals fκ and gκ, in table 1.
Figure 1(b) shows the shape of the eigenvectors corresponding to the six least-stable
eigenvalues along with an example of a spurious mode as discussed in § 3.4.1.

An important observation from figure 1(b) is that eigenvalues in the upper branch
of figure 1(a) have corresponding eigenvectors with variations primarily in the centre
of the channel, and thus it may be expected that these modes will be less controllable
via wall transpiration and less observable via wall measurements than eigenmodes in
the lower branch. This observation is quantified by smaller values of fκ and gκ for
these modes.

Note from table 1 that the third eigenmode is five orders of magnitude less
sensitive than the first eigenmode to modifications in the control. In general, those
modes in the upper branch of figure 1(a) (large |Im (λ)|) are much less sensitive to
control than those in the lower branch (small |Im (λ)|). Near the intersection of the
two branches (Re (λ) ≈ −0.3), the control residual is maximum, while it decreases
slowly to the left of this intersection (Re (λ) < −0.3). It can be predicted that the
closed-loop eigenmodes corresponding to the largest fκ might be affected most upon
application of controller feedback. Indeed, Joshi et al. (1997) report difficulty with
the destabilization of mode κ = 37, the mode with the largest fκ, by application of
their PI controller.

Note also from table 1 that the flow measurements are two orders of magnitude
less sensitive to the third eigenmode than they are to the first eigenmode. It can be
predicted that the closed-loop eigenmodes corresponding to the largest gκ might be
affected most upon application of estimator feedback.
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Figure 1. Least-stable eigenmodes of A for case (i). (a) Least-stable eigenvalues. The six least-stable
eigenmodes are labelled. (b) Real (solid) and imaginary (dashed) parts of the v component of
the eigenvectors corresponding to the six eigenvalues labelled in (a) and the spurious, unresolved
eigenmode discussed in § 3.4.1 (initially located at λ = −0.0214+1.514 i and later damped to remove
its influence), plotted as a function of y from the lower wall (bottom) to the upper wall (top). The
corresponding ω components of these eigenvectors are zero.
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κ λκ fκ gκ

1 0.00373967− 0.23752649 i 0.266545 102.61
2 −0.03516728− 0.96463092 i 0.000215 72.85
3 −0.03518658− 0.96464251 i 0.000005 1.45
4 −0.05089873− 0.27720434 i 0.026606 347.98
5 −0.06320150− 0.93631654 i 0.000513 81.39
6 −0.06325157− 0.93635178 i 0.000021 2.90
7 −0.09122274− 0.90798305 i 0.000931 83.36
8 −0.09131286− 0.90805633 i 0.000056 4.32
9 −0.11923285− 0.87962729 i 0.001587 77.67

10 −0.11937073− 0.87975570 i 0.000124 5.37
11 −0.12450198− 0.34910682 i 0.171859 69.50
12 −0.13822653− 0.41635102 i 0.037660 252.09
13 −0.14723393− 0.85124584 i 0.002833 63.31
14 −0.14742560− 0.85144938 i 0.000268 5.59
15 −0.17522868− 0.82283504 i 0.005581 44.14
...

...
...

...
37 −0.32519719− 0.63610486 i 5.659801 0.78
38 −0.34373267− 0.67764346 i 4.685315 0.64
...

...
...

...
52 −0.66286552− 0.67027520 i 0.259581 11.58
...

...
...

...

Table 1. Least-stable eigenmodes of A for case (i) and the associated control and observation
residuals. Calculation used Chebyshev collocation technique with N = 140 in quad precision.
The only unstable mode (κ = 1) is both sensitive to the control u and easily detected by the
observations y.

5.2.2. Eigenmode analysis of case (ii)

The least-stable eigenvalues of A for case (ii) are plotted in figure 2(a) and tabulated,
along with the corresponding control and observation residuals fκ and gκ, in table 2.
Figure 2(b) shows the shape of the eigenvectors corresponding to the nine least-stable
eigenvalues. Note that all eigenmodes shown span the entire channel, and thus fκ and
gκ are all O(1); i.e. the least-stable eigenmodes are both observable and controllable.

An important observation from figure 2 is that the eigenvalues in this case tend to
come in nearly identical pairs, and the corresponding eigenvectors are nearly parallel.
This structure may be explained by examination of the governing equations. Defining
∆v ≡ DD̃− k2

z I and ∆ω ≡ DD− k2
z I , the discrete form of (2.4) when kx = 0 is

∆v v̇ = {∆v(∆v/Re)} v
ω̇ = {−i kz U

′} v + {∆ω/Re} ω.
⇒

v̇ =L v

ω̇ = C v +Sω
⇒ ẋ = Ax+ Bu,

where L = ∆v/Re, C = −i kz U
′I , and S = ∆ω/Re, and Lc, Cc, and Sc are the

centre blocks of L, C, and S respectively, as discussed in § 2.2. Note that the only
difference betweenS andL is the treatment of boundary conditions in the derivative
operators of ∆v and ∆ω . The eigenvalues of the system matrix A are the union of
the eigenvalues of Sc and the eigenvalues of Lc. Due to the similarity of these two
matrices when kx = 0, the eigenvalues of A tend to come in nearly identical pairs, as
shown in figure 2(a).

Note that half of the eigenvectors of A x = λ x correspond to the eigenvectors of
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Figure 2. Least-stable eigenmodes of A for case (ii). (a) Least-stable eigenvalues. Imaginary compo-
nents of all eigenvalues are negligible. (b) Real part of the ω component of the eigenvectors (solid)
and 1000 times the imaginary part of the v component of the eigenvectors (dashed) corresponding
to the least-stable eigenvalues of (a), plotted as a function of y from the lower wall (bottom) to the
upper wall (top). Imaginary part of the ω components and real part of the v components of these
eigenvectors are negligible.
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κ λκ fκ gκ

1 −0.00132907 0.9619 1.0396
2 −0.00205172 0.9932 1.8656
3 −0.00280951 0.5092 1.9641
4 −0.00444971 1.0457 2.3710
5 −0.00527691 0.3478 2.8749
6 −0.00794734 0.9150 2.9317
7 −0.00873127 0.2646 3.7789
8 −0.01233325 0.8009 3.5058
9 −0.01317259 0.2137 4.6786

10 −0.01781312 0.6841 4.1763
11 −0.01860088 0.1794 5.5751
...

...
...

...

Table 2. Least-stable eigenmodes of A for case (ii) and the associated control and observation
residuals. Calculation used Chebyshev collocation technique with N = 70 in quad precision. All
modes are stable and all eigenvalues real.

Sω = λω with v = 0. The other half of the eigenvectors of A correspond to the
eigenvectors of L v = λ v with ω = −(S − λ I )−1C v. Since the matrix (S − λ I )
is nearly singular, ||v||/||ω|| � 1 in this second set of eigenvectors. Further, as
the eigenvalues of the second set are near those of the first set, the (dominant) ω
components of the two sets of eigenvectors are nearly parallel, as shown in figure 2(b).

5.3. Transient energy growth

The exponential energy growth possible in case (i), as shown in figure 3(a), is well
predicted by examining the eigenvalues for this case in figure 1(a), as a system
eigenvalue in the right half-plane implies an unstable mode. The eigenvalues move to
the left half-plane as stabilizing estimators and controllers are applied to the system.

The large but finite transient energy growth possible in case (ii), which reaches
a maximum of E(τ)/E(0) = 4897 for the uncontrolled system as shown in figure
3(b), can not be predicted by examination of the eigenvalues for this case in figure
2(a). Such a large transient energy growth in a linearly stable system is possible
because the eigenvectors of case (ii) are highly non-orthogonal, as shown in figure
2(b). The mechanism for this large energy growth is explained in physical terms in
figure 4. For small but finite initial flow perturbations, O(Re) transient energy growth
may be large enough to stimulate nonlinear instabilities in the flow and instigate
transition to turbulence. In § 6.4, the maximum transient energy growth for case (ii),
maxτ,x(0){E(τ)/E(0)}, is shown to be significantly reduced as estimators and controllers
are applied to the system.

5.4. Transfer function norms

As described in § 4.4, in order to quantify the behaviour of the state response to
disturbances and the control response to disturbances separately, norms of the transfer
functions Txw and Tuw will be computed separately. Three norms will be considered:
||Txw||2 is a measure of the state response to Gaussian disturbances, ||Txw||∞ is a
measure of the state response to worst-case disturbances, and ||Tuw||2 is a measure of
the control used in response to Gaussian disturbances. These transfer function norms
will be used as benchmarks in § 6.1 to quantify the effects of control and estimation
for the present systems.
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Figure 3. Maximum energy growth for open-loop, uncontrolled systems: E(t)/E(0) versus t.
(a) Case (i), unstable. (b) Case (ii), stable. Transient energy growth at τ = 379 is E(τ)/E(0) = 4897.

(a)  t = 0 (b)  t = τ/8

(d)  t = 4τ(c)  t = τ

Figure 4. Shape of the flow perturbation with the largest transient energy growth for case (ii), as
plotted in figure 3(b). At the left of each subfigure is the perturbation plotted as in figure 2(b), with
the v component (dashed) magnified by a factor of 250 as compared with the ω component (solid).
The corresponding flow perturbation in a cross-flow plane is shown at the right of each subfigure,
with the cross-flow velocity vectors shown as arrows and the streamwise velocity as contours; recall
that the flow perturbations for case (ii), with kx = 0, have no streamwise variation. The initial
perturbation (a superposition of several eigenmodes) is a streamwise vortex filling the channel with
zero streamwise velocity component. The streamwise vorticity diminishes with time, during which
very large streamwise velocity fluctuations are induced by its action on the mean streamwise velocity
profile U(y). Positive streamwise velocity regions (‘sweeps’) are indicated with solid contours, and
negative streamwise velocity regions (‘ejections’) are indicated with dashed contours. The streamwise
velocity fluctuations eventually decay, after the streamwise vorticity inducing them is sufficiently
reduced.

For the uncontrolled cases, of course, Tuw = 0. For case (i), as the uncontrolled sys-
tem is unstable, ||Txw||2 and ||Txw||∞ are infinite; any slight excitation of the unstable
mode of the system results in an unbounded response. For case (ii), the uncontrolled
system has ||Txw||2 = 524.8 and ||Txw||∞ = 15 388. Note that these numbers are quite
large; due to the non-orthogonality of the eigenvectors of case (ii), the state is very sen-
sitive to small disturbances of a particular structure. Note also that the system response
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Control type
Control

parameters
||Txw||2 ||Txw||∞ max

τ,x(0)

{
E(τ)

E(0)

}
||Tuw||2

(No control) – ∞ ∞ ∞ 0

H2 Full ` = 1000 589.8 13357 24.4 20.29
control information ` = 100 574.8 12421 24.4 20.31
γ →∞ controller ` = 30 522.0 9163 23.9 20.93

` = 10 498.5 7114 23.5 22.44
` = 1 497.2 6673 23.4 23.07
` = 0.1 497.2 6668 23.5 23.08

State α = 1000 461.6 10248 55.5 0
estimator† α = 100 339.0 5273 53.4 0

α = 10 133.8 563 33.4 0
α = 1 89.2 160 25.4 0
α = 0.1 90.1 158 25.4 0

Composite α = 100, ` = 100 867.3 22565 57.2 24.05
estimator/ α = 10, ` = 30 548.5 9879 47.8 20.94
controller‡ α = 1, ` = 1 501.2 6730 50.4 23.17

H∞ Full γ = ∞ 522.0 9163 23.9 20.93
control information γ = 10000 538.8 5129 23.3 28.35
α = 10 controller γ = 8500 884.1 4254 23.3 50.53
` = 30 γ = 8200 1807.9 4091 23.3 104.54

γ = γ0 = 8122 16522.7 4052 23.2 956.87

State γ = ∞ 133.8 563 33.4 0
estimator† γ = γ0 = 704 117.6 310 22.5 0

Composite γ = ∞ 548.5 9879 47.8 20.94}
estimator/ γcontroller = 8500

1047.2 4543 335.8 60.07controller‡ γestimator = 704

Proportional k1 = k2 = 2¶ 3549 62248 8.5 ∞
control k1 = k2 = 10 4641 6047 167 ∞
φ1 = φ2 = 0 k1 = k2 = 60 6993 4577 7410 ∞

k1 = k2 = 100 7908 5253 17800 ∞
k1 = k2 = 1000 17596 61341 58600 ∞
k1 = k2 = 10000 43736 456491 86800 ∞

† State estimator: transfer function to xE and max growth of E ≡ x∗E Q xE reported.
‡ Composite estimator/controller: max growth of E ≡ x∗ Q x+ x∗E Q xE reported.
¶ The minimum ki which stabilize the proportionally controlled closed-loop system.

Table 3. Performance of various controllers, case (i): Re = 10 000, kx = 1, kz = 0.

for the two different types of disturbances (Gaussian and worst case) differ by a factor
of 30; Gaussian analysis alone is not sufficient to completely characterize the system.

6. Analysis of closed-loop systems
The controlled (‘closed-loop’) systems are now examined in detail using the analysis

methods of § 4. Specifically, the behaviour of the flow and the estimator/controllers
(or portions thereof) operating together as a single dynamical system is characterized.
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Control type
Control

parameters
||Txw||2 ||Txw||∞ max

τ,x(0)

{
E(τ)

E(0)

}
||Tuw||2

(No control) – 524.8 15388 4897 0

H2 Full ` = 1000 523.2 15307 4858 0.03
control information ` = 100 426.5 10796 943 1.93
γ →∞ controller ` = 30 284.8 5163 155 6.35

` = 10 22.61 3616 185 11.59
` = 1 212.6 3353 161 18.25
` = 0.1 212.6 3350 159 18.49

State α = 1000 524.6 15376 4894 0
estimator† α = 100 507.6 14333 4667 0

α = 30 415.7 9412 3448 0
α = 10 271.8 4853 1779 0
α = 1 155.9 2450 762 0
α = 0.1 248.7 2383 690 0

Composite α = 100, ` = 100 522.4 15135 4844 0.07
estimator/ α = 10, ` = 30 398.8 7988 2679 3.49
controller‡ α = 1, ` = 1 271.3 4528 1313 15.50

H∞ Full γ = ∞ 284.8 5163 155 6.35
control information γ = γ0 = 5340 260.8 3558 277 8.86
α = 10 controller
` = 30

State γ = ∞ 271.8 4853 1779 0
estimator† γ = γ0 = 5058 234.5 3284 1473 0

Composite γ = ∞ 398.8 7988 2679 3.49}
estimator/ γcontroller = 5340

353.2 5797 2357 5.56controller‡ γestimator = 5058

Proportional k1 = k2 = 0.1 543 15028 4821 ∞
control k1 = k2 = 1 1685 12885 4327 ∞
φ1 = φ2 = 0 k1 = k2 = 10 16175 9219 3270 ∞

k1 = k2 = 100 161680 8181 2095 ∞
k1 = k2 = 1000 1616300 8058 2860 ∞
k1 = 10, k2 = 0 11443 13405 4219 ∞

† State estimator: transfer function to xE and max growth of E ≡ x∗EQxE reported.
‡ Composite estimator/controller: max growth of E ≡ x∗Qx+ x∗E Q xE reported.

Table 4. Performance of various controllers, case (i): Re = 5000, kx = 0, kz = 2.044.

6.1. Quantitative comparison of various closed-loop systems

Tables 3 and 4 summarize a parametric study of a variety of control schemes applied
to cases (i) and (ii), respectively, using the transfer function norms described in § 4.4
to provide a quantitative comparison betweenH2,H∞, and proportional controllers.

The first two columns in these tables list the settings of the relevant parameters
used to determine the controller and/or estimator. The remaining columns contain
data on the response of the state in the closed-loop system to Gaussian disturbances
and worst-case disturbances, the maximum transient energy growth, and the level
of control effort used to attain this closed-loop performance. Specifically, the third
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column contains ||Txw||2, which indicates the square-root of the expected energy
of the state, E[ x∗Q x ], in response to white Gaussian disturbances w. The fourth
column contains ||Txw||∞, which indicates the square-root of the expected energy of
the state in response to worst-case disturbances w with unit norm. For comparison,
the fifth column contains the maximum transient energy growth of the closed-
loop system. The sixth column contains ||Tuw||2, which indicates the r.m.s. value of
the control u in response to white Gaussian disturbances w. Recall that, by (4.8),
||Tzw||22 = ||Txw||22 + `2||Tuw||22. For consistency, all transfer function norms tabulated
are computed under the assumption that α = 1 in the determination of the norm,
though the estimator feedback L is determined with the value of α cited in the table.
Of course, the analyses may be conducted easily for other values of α which better
describe a particular system of interest.

6.1.1. Full information controllers

To investigate the behaviour of the H2 and H∞ controllers separately from that
of the estimator, consider the closed-loop system 2 in (4.10) for the controlled state
x, obtained by combining the open-loop plant with the controller and assuming full
state information is available.

It is seen from tables 3 and 4 that full information controllers do an excellent job
of reducing both ||Txw||2 and ||Txw||∞, while maintaining finite values of ||Tuw||2. The
full information H2 controllers minimize the 2-norm of the transfer function from
the disturbance w to the performance measure z, namely, ||Tzw||22 = ||Txw||22 +`2||Tuw||22;
this is, in fact, theH2 design objective. As the control is made cheaper (` is reduced),
the state x contributes relatively more to the performance measure z, causing theH2

controller to drive ||Txw||2 to the minimum value possible, though the control effort
required, ||Tuw||2, generally increases; these trends are all confirmed in the tables.

At a fixed price for the control (` = 30), the introduction of a worst-case disturbance
in the design of anH∞ controller (by the reduction of γ) results in a system which does
not necessarily further reduce ||Txw||2, but which reduces the ∞-norm of the transfer
function from the disturbance w to the performance measure z, namely, ||Tzw||∞; this
is, in fact, theH∞ design objective. For vanishing values of `, the absolute minimum
value for ||Txw||∞ may be obtained by reducing γ of theH∞ controller to its minimum
value γ0. However, such a controller may require more control effort, ||Tuw||2, and/or
have worse response to Gaussian disturbances, ||Txw||2, than desirable for a particular
implementation. To compensate, intermediate values of γ and ` may be chosen. The
two parameters γ and ` provide the flexibility needed to achieve the desired trade-off
between (a) Gaussian disturbance response, (b) worst-case disturbance response, and
(c) control effort required.

Note that ` → 0 limits exist for all norms listed for both case (i) and case (ii). As
the present systems are stabilizable but not controllable, as remarked in § 5.1, there
are diminishing returns to be gained by increasing the feedback gains K . The optimal
controllers do not attempt to push the closed-loop system beyond the limits imposed
by uncontrollable modes. This topic is quantified further in § 6.5 using the modal
control residuals defined in § 4.2.

6.1.2. State estimators

To investigate the behaviour of the H2 and H∞ estimators separately from that
of the controller, consider the closed-loop system 3 in (4.11) for the estimation error
xE ≡ x − x̂, obtained by combining the open-loop plant with the estimator and
assuming no control is applied.
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It is seen from tables 3 and 4 that the state estimators (based on measurements at
the wall only) do an excellent job of regulating the response of the estimation error
xE to both Gaussian disturbances (||Txw||2) and worst-case disturbances (||Txw||∞).
As the measurements are assumed to be increasingly accurate in the design of the
estimator (α is reduced), the estimator feedback is increased, and it is seen that
the H2 estimator drives ||Txw||2 to small values, though the estimator feedback
(not tabulated) generally increases. Note that the behaviour of ||Txw||2 is not quite
monotonic with respect to α for both case (i) and case (ii). This is because the H2

estimator is designed to reduce the expected value of x∗E xE , though, in the tables,
||Txw||2 represents the transfer function related to the expected value of x∗E Q xE for
consistency. The difference between these two types of measures is discussed further
in § 6.2.

At a fixed relative magnitude of measurement noise, α = 10, the introduction of
a worst-case disturbance in the design of an H∞ estimator (by the reduction of γ)
results in a system which reduces ||Tzw||∞, in a manner analogous to that of the H∞
controller. For small values of α (reliable measurements), high levels of estimator
feedback may result. Note that high levels of estimator feedback (or, for that matter,
controller feedback) can cause problems if the state model A in the estimator (3.2a) is
inaccurate. Though this topic is beyond the scope of the present discussion, it suffices
to say that small levels of estimator feedback are desirable from the standpoint of
reduced sensitivity to modelling errors. The two parameters γ and α provide the
flexibility needed to achieve the desired trade-off between (a) Gaussian disturbance
response, (b) worst-case disturbance response, and (c) estimator feedback required.
Future work recommended in this area would be a µ-synthesis approach to the present
control problem to account rigorously for the sensitivity of the system to modelling
uncertainties (Skogestad & Postlethwaite 1996).

6.1.3. Composite estimator/controllers

To investigate the behaviour of the estimator and controller acting together, con-
sider the closed-loop composite system 4 in (4.12), in which the state is formed by
the union of x and xE and the system is obtained by combining the open-loop
plant with both the estimator and the controller. It is seen from tables 3 and 4 that
the transfer function norms ||Txw||2 and ||Txw||∞ for the controlled systems based on
estimated state information x̂ are slightly degraded from the controlled systems using
the corresponding full-information controllers.

Some degradation of performance in the composite system (as compared with the
full-information system) is expected, as the system dynamics of the composite system
are of increased complexity. To characterize the dynamics of the composite system
when no disturbances are present, the eigenmodes of

Ã =

(
A+ B2 K −B2 K

0 A+ LC2

)
may be considered. The closed-loop eigenvalues of the composite system matrix Ã
are simply the union of the eigenvalues of the controlled system (A + B2 K) and the
eigenvalues of the estimated system (A+LC2) discussed in the previous two Sections.

Half of the eigenvectors of Ã are formed by the eigenvectors of the controlled
system (A + B2 K) x = λ x with xE = 0. Thus, in the closed-loop composite system
with no disturbances, if the initial state estimate is correct (xE(0) = 0), then the
state estimate will remain correct (xE(t) = 0) and the dynamics of the (decoupled)
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Figure 5. Locus of least-stable eigenvalues of the H2 controller (γ → ∞) as a function of `.
Eigenvalues for ` → ∞ are marked with an ×, and those for ` → 0 are marked with an o. Note
that eigenvalues barely move in this plot, though ||Tzw||2, for which this controller is designed, is
effectively minimized.
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Figure 6. Locus of least-stable eigenvalues of a modified H2 controller, taking (for this plot only)
C1 = (I 0)∗. Eigenvalues are marked as in figure 5. Note that the eigenvalues in the lower branch
are significantly moved by this modified H2 controller. However, the physically relevant transfer
function norms are more effectively reduced by controllers which are specifically designed taking
the energy of the state into account, i.e. by those which take C1 = (Q1/2 0)∗. As shown in figure
5, such controllers may result in significantly less eigenvalue movement in a root locus plot. This
implies that root locus plots themselves, which characterize eigenvalues but not eigenvectors or
closed-loop transfer function norms, do not give the complete picture of system performance.
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Figure 7. Locus of least-stable eigenvalues of the H∞ controller as a function of γ, taking ` = 30.
Eigenvalues for the H2 limit (γ → ∞) are marked with an ×, and those for γ → γ0 are marked
with an o. The introduction of the unstructured disturbance in the H∞ controller modifies only
the least-stable eigenmode of an H2 result, without expending any extra feedback to control those
eigenmodes not associated with the maximally unstable component of the system.
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Figure 8. Locus of least-stable eigenvalues of the MIMO proportional controller as a function of
k1 = k2 = k, taking φ1 = φ2 = 0. Eigenvalues for k = 0 are marked with an ×, and those for k →∞
are marked with an o. Note that, in the large gain limit, the eigenvalues in the lower branch align
on a diagonal line.
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system as it is regulated to zero will simply be the dynamics of the controlled
plant provided with full state information. The other half of the eigenvectors of Ã
are formed by the eigenvectors of the estimated system (A + LC2) xE = λ xE with
x = (A+B2 K−λI )−1 B2 K xE . Thus, any errors in the initial state estimate (xE(0) 6= 0)
will induce perturbations in the state itself (x(t) 6= 0) as the entire coupled system is
regulated back to zero.

6.1.4. Comparison with proportional control

Proportional controllers, though simpler in their design, are not nearly as effective
as the H2 and H∞ controllers. The most important flaw of any controller with a
proportional component, as described in § 4.6, is that it has no high-frequency roll-off
in the controller’s response to measurement noise, so the r.m.s. of the control response
u to white noise (||Tuw||2) is unbounded.

The best H∞ composite estimator/controllers tested, shown in tables 3 and 4,
are seen to perform better than all proportional controllers tested with respect to
the response of the state x to both white noise disturbances (||Txw||2) and worst
case disturbances (||Txw||∞). This is remarkable, as the H∞ estimator/controllers use
significantly less control energy than the proportional controllers, as indicated by
their bounded values of ||Tuw||2.

6.2. System eigenvalue (‘root locus’) analyses

By examining root locus plots which map the movement of the closed-loop sys-
tem eigenvalues with respect to the scalar parameters of the system (for the H∞
controller, γ, α, or `; for the proportional controller, k1 = k2 = k), the effect of
an estimator/controller applied to a large MIMO linear system may be partially
characterized.

The eigenmodes of Ã = A+ B2 K describe the dynamics of the closed-loop system
2 in (4.10) when u′ = w = 0. The movement of these eigenvalues as a function of `
and γ, the free parameters of the H∞ controller, for case (i) are examined in figures
5, 6 and 7. The eigenvalues for `→∞ are very near those of the uncontrolled system
A in figures 5 and 6, with the previously unstable mode reflected just to the left
of the imaginary axis; this solution represents the ‘expensive control’ limit that uses
the minimum control necessary to marginally stabilize the system. The eigenvalues
generally move to the left as `, the ‘price’ of the control, is decreased.

For C1 = (Q1/2 0)∗, the definition given in (3.4) and used throughout this paper, the
root locus for an H2 controller with respect to ` is given in figure 5; note that the
eigenvalues move only slightly with the application of H2 control. For C1 = (I 0)∗,
a definition which weights all of the discretized values of the state x equally, more
eigenvalue movement is seen in the root locus with respect to `, as shown in figure
6. However, the physically relevant energy norm, ||Tzw||2, is reduced less effectively by
this modifiedH2 controller. The modified definition of C1 results in extra weighting in
the performance measure on those regions of flow where the grid points are clustered.
In the present case, this weighting takes the form η(y) = (1 − y2)−1/2, as discussed
in § 2.4. This is a very large weighting on the eigenfunctions near the wall, and thus
this performance measure results in very large movement of all of the controllable
eigenmodes which are non-zero in the heavily weighted region near the wall when
the corresponding optimal controller is applied. The weighting given by η(y) is not
physically based, and thus, in the opinion of the authors, should not be used to define
the performance measure. If a rigorous analysis indicates a Lyapunov function more
relevant to secondary instability than the energy norm, that function may easily be
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used to replace Q in the present development. However, the ad hoc weighting implied
by η(y) is almost certainly not such a function, and performance measures based on
the kinetic energy density, as used here, are preferred.

Figure 7 shows the movement of the closed-loop system eigenvalues as a function
of γ, taking ` = 30. Starting from a stable closed-loop H2 system (γ = ∞) with
an intermediate value for the price of the control (` = 30), it is observed that the
introduction of an unstructured disturbance into the controller computation (reducing
γ) affects only the least-stable component of the system. Compare this with the H2

controller in figures 5 and 6, which show that all controllable modes of the system
are modified when ` is reduced.

Figure 8 shows the movement of the closed-loop system eigenvalues when MIMO
proportional control is applied. For k > 2, the system is stable (i.e. the unstable
eigenvalue moves to the left half-plane), and the eigenmodes appear to be effectively
controlled right up to the large gain limit. Note also that a new, distinct (

Y

)-shaped
structure to the locus of eigenvalues emerges for case (i) with a MIMO proportional
controller in the large gain limit, as indicated by the eigenvalues marked with an o in
figure 8. The simple pattern of eigenvalues in the lower branch, which is reminiscent of
the pattern of eigenvalues of the (uncontrollable) centre modes in the upper branch,
apparently emerges due to a fundamental shift to a simple boundary condition in this
limit, as discussed in the following section.

Though root locus plots do reveal some important trends, they do not indicate
the important effects of the non-orthogonality of the eigenvectors or the effect of
the control on the physically relevant norms of interest. For systems (such as the
present) with highly non-orthogonal eigenvectors, a root locus characterization can
therefore be misleading, as established above by the apparently good behaviour of the
proportional controller in the large gain limit, indicated by figure 8, but its terrible
disturbance response in this limit, reported in table 3. Note that Trefethen et al. (1993)
have proposed an interesting extension to the root locus approach, referred to as
pseudospectra, which extends the root locus analysis to reflect the sensitivity of a
system to external forcing. In the future, such a technique should be explored in
a closed-loop framework in an attempt to obtain a graphical characterization of
different control approaches.

6.3. Modification of eigenvectors by application of control

The modified shapes of the closed-loop eigenvectors for case (i) by application of
H∞ control and proportional control are shown in figure 9. Only the κ = 1 mode is
significantly modified by the H∞ controller, whereas all controllable eigenmodes are
modified by the proportional controller. For case (ii), however, it is seen that the H2

(and H∞) controllers modify all of the eigenvectors, as shown in figure 10. In this
case, the critical issue is the non-orthogonality of the set of eigenvectors, not the real
component of any particular eigenvalue, and thus the optimal control acts to make
the set of eigenvectors more orthogonal.

Recall from § 2 that the boundary conditions on the uncontrolled Orr–Sommerfeld
problem are v = 0 and ∂v/∂y = 0 at the walls. Consider the proportional controller
of the form u = Kym given in (3.7), taking k1 = k2 = k and φ1 = φ2 = φ. By (2.5),
noting that kz = 0 for this case, the homogeneous Dirichlet boundary conditions at
each wall are replaced by

v = k eiφ 1

Re

∂u

∂y
= k

(
i kx eiφ

k2
x + k2

z

1

Re

)
∂2v

∂y2
= k C

∂2v

∂y2
,
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(a)

(b)

Figure 9. Modified shape of closed-loop eigenvectors for case (i) by application of H∞ control
(a) and MIMO proportional control (b). Eigenvectors scaled as in figure 1(b). Note that only
eigenvectors with wall support, corresponding to the six least-stable eigenmodes from the lower
branch, are plotted; the uncontrollable eigenmodes from the upper branch are not modified by the
control and are not shown. Those eigenmodes which have been modified by the control show a
non-zero value of v at the wall in the above plots. (a) ` = 30 and γ = 8300. Only the least-stable
mode is significantly modified. (b) k1 = k2 = 10000. All controllable eigenmodes are significantly
modified.
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Figure 10. Modified shape of the nine least-stable closed-loop eigenvectors for case (ii) by application
of H2 control with ` = 1. Eigenvectors plotted as in figure 2(b), with the v component (dashed)
magnified by a factor of 300 rather than a factor of 1000. The eigenvectors are made more
orthogonal by the application of control, to the point that a one-to-one correspondence of the
above eigenmodes to the uncontrolled eigenmodes of figure 2(b) is barely distinguishable.

where C is some constant. Note that the homogeneous Neumann boundary condition
still applies due to continuity. In the limit for which the feedback gain k → ∞,
assuming the eigenvectors remain finite (confirmed a posteriori ), the Dirichlet bound-
ary condition is equivalent to a homogeneous boundary condition on the second
derivative of v, i.e.

∂v

∂y
= 0 and

∂2v

∂y2
= 0 when k →∞.

These simple boundary conditions on the closed-loop eigenvectors are verified by the
plots of the computed eigenvectors for the proportional controller with large k in
figure 9(b) for case (i), which clearly shows that both the slope and the curvature of
the closed-loop eigenvectors go to zero near the wall. It is inferred that these simple
homogeneous boundary conditions are related to the simple eigenvalue structure
which emerges in this limit, as shown in figure 8.

6.4. Reduction of maximum transient energy growth

The effect of the control on the worst-case transient energy growth is tabulated along
with the transfer function norms in tables 3 and 4. Though large values of ||Tzw||∞ and
large values of transient energy growth are both due, in part, to non-orthogonality of
the eigenvectors, they do not always correlate closely as the various control parameters
are altered. It is the excitation by external disturbance forcing, and not the growth
from a particularly deleterious set of initial conditions, which is the primary topic of
interest in the present control problem. Thus, transfer function norms, which quantify
the response of the state and the control to external disturbance forcing, are used in the
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Figure 11. Reduction of maximum transient energy growth by application of control to case (ii):
E(t)/E(0) versus t. Top to bottom: no control, proportional control (k = 1000), wall-information
H2 control (γ = ∞, α = 1, ` = 1), full-information H2 control (γ = ∞, ` = 30).

(a)  t = 0 (b)  t = τ/8

(d)  t = 4τ(c)  t = τ

Figure 12. Shape of the modified flow perturbation with the largest transient energy growth for the
closed-loop case (ii) with full-information H2 control. A thirty-fold reduction of transient energy
growth is obtained (figure 11) as compared with perturbations to the uncontrolled flow (figure
4). Subfigures plotted as in figure 4, with the contours of streamwise velocity rescaled to show
detail. The control at the wall acts to create small ‘buffer’ vortices near each wall, thereby reducing
the extent of the streamwise vortex at the centre of the channel. The reduction in energy growth
is compounded by the fact that this reduced centre vortex acts over a reduced range in mean
streamwise velocity U(y) = 1− y2 between the centre and the edge of the vortex, thereby reducing
its effectiveness at inducing streamwise velocity fluctuations.

present work to formulate the control objective. However, a side effect of the control
application in the present problem is that the maximum transient energy growth
of the system is reduced effectively. For example, the maximum transient energy
growth in case (ii), which is reduced from an uncontrolled value of E(τ)/E(0) = 4897
to a value of 2860 by the proportional controller, is reduced to a value of 1313
by the wall-information H2 controller, and is reduced to a value of 155 by the
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κ λκ fκ

1 −0.01047924− 0.23786793i 0.000148105
2 −0.03516736− 0.96463100i 0.000000125
3 −0.03518658− 0.96464251i 0.000000003
4 −0.05096577− 0.27721190i 0.000015360
5 −0.06320167− 0.93631678i 0.000000297
6 −0.06325157− 0.93635179i 0.000000012
7 −0.09122298− 0.90798352i 0.000000538
8 −0.09131286− 0.90805636i 0.000000033
9 −0.11923315− 0.87962804i 0.000000918

10 −0.11937073− 0.87975574i 0.000000072
11 −0.12496333− 0.34921218i 0.000106622
12 −0.13828462− 0.41636473i 0.000021774
13 −0.14723423− 0.85124693i 0.000001639
14 −0.14742558− 0.85144947i 0.000000156
15 −0.17522893− 0.82283652i 0.000003228

Table 5. Least-stable eigenmodes of the closed-loop system (A + B2K) and their sensitivity to
modifications of the control rule for the H2 controller in the limit of cheap control (` = 0.01). The
numbering of the eigenvalues shown is the same as the numbering of the eigenvalues of table 1 to
which they are connected by the root locus of figure 5. In the ` → 0 limit, the control feedback
modifies the closed-loop system eigenmodes until they are insensitive to further modifications of
the control feedback, as illustrated by vanishing values of the control residual fκ.

full-information H2 controller, as tabulated in table 4 and shown in figure 11. The
mechanism for the large reduction in energy growth is explained in physical terms in
figure 12. Finite-horizon terminal controllers, in both an H2 and H∞ setting (Green
& Limebeer 1995), may be proposed to minimize the transient energy growth of a
closed-loop system over a time interval τ in a rigorous manner. However, such is not
the objective of the present control problem.

6.5. Sensitivity of optimal estimator/controllers to further modification

The sensitivity of the closed-loop system eigenmodes to further modification of the
H2 controller (γ → ∞) in the cheap control limit (` → 0) is shown in table 5. This
table shows that, in the cheap control limit, the closed-loop system matrix is modified
to the point that the eigenmodes are no longer sensitive to further modification of
the controller feedback. All of the controllable dynamics of the system have been
used by the controller feedback in this limit. This demonstrates that the optimal (H2)
controller extracts the best possible performance from a given system assumed to
have no state disturbances and full, accurate state information.

The sensitivity of the closed-loop system eigenmodes to further modification of
the H2 estimator (γ → ∞) in the low measurement noise limit (α → 0) is shown
in table 6. This table shows that, in the limit of precise flow measurements, the
closed-loop system matrix is modified to the point that the eigenmodes are no longer
sensitive to further modification of the estimator feedback. All of the observable
dynamics of the system have been used by the estimator feedback in this limit. This
demonstrates that the optimal (H2) estimator (also known as a Kalman–Bucy filter)
extracts the best possible state estimate from a given set of measurements when no
control is applied and the system matrix A is modelled exactly.

Note, however, that the locations of the closed-loop eigenvalues in the ` → 0
and α → 0 limits depend upon the definition of performance measure, and thus are
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κ λκ gκ

2 −0.03505745− 0.96474092i 0.0000568
3 −0.03518656− 0.96464253i 0.0000004
5 −0.06287933− 0.93668082i 0.0000644
6 −0.06325135− 0.93635193i 0.0000008
4 −0.08362192− 0.25066956i 0.0002858
7 −0.09059623− 0.90874809i 0.0000673
8 −0.09131193− 0.90805687i 0.0000011
1 −0.09588644− 0.17888614i 0.0000118
9 −0.11823783− 0.88095109i 0.0000646

10 −0.11936798− 0.87975705i 0.0000014
11 −0.14135187− 0.25722461i 0.0000176
13 −0.14584721− 0.85329546i 0.0000549
14 −0.14741907− 0.85145213i 0.0000014
15 −0.17347709− 0.82577391i 0.0000399
12 −0.17418704− 0.40314739i 0.0002002

Table 6. Least-stable eigenmodes of the closed-loop system (A + LC2) and their sensitivity to
modifications of the estimator feedback for theH2 estimator in the limit of vanishing measurement
noise (α = 0.000001). The numbering of the eigenvalues shown is the same as the numbering of the
eigenvalues of table 1 to which they are connected by the appropriate root locus with respect to α.
In the α → 0 limit, the estimator feedback modifies the closed-loop system eigenmodes until they
are insensitive to further modifications of the estimator feedback, as illustrated by vanishing values
of the observation residual gκ.

not unique. This can be seen by noting that, in the ` → 0 limit, the eigenvalue
locations obtained by the two optimal controllers in figures 5 and 6 are very different.
Thus, though the modal control and observation residuals fκ and gκ are useful
from a qualitative standpoint to understand the limiting processes involved, they do
not provide quantitative measures for how far a given eigenvalue will move upon
application of control.

7. Summary and conclusions
Optimal (H2) and robust (H∞) control theories have been applied to the equations

governing linear instabilities and disturbance amplification in laminar flows. Two
cases, one supercritical and one subcritical (with highly non-orthogonal eigenmodes),
have been studied in detail. The disturbance response in both cases is effectively
reduced by the modern control approaches, and it is shown that approaches based
on modern control theory significantly outperform classical proportional control ap-
proaches. Several different analysis approaches are used to quantify the behaviour
of the controlled systems. Transfer function norms are the most natural measure
to characterize the relevant properties of the systems at hand. Maximum transient
energy growth also characterizes eigenmode non-orthogonality, but does not char-
acterize well the degree to which external disturbances excite flow perturbations.
Root locus analyses alone, which account only for system eigenvalues and not the
non-orthogonality of system eigenvectors, are inadequate to characterize the present
systems.

A convenient new scaling to theH∞ estimation problem has been introduced such
that three scalar parameters {γ, α, `} may be individually adjusted to achieve desired
closed-loop system characteristics in large MIMO systems, and the performance of a
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family of H2 and H∞ controllers applied to the flow stability problem is thoroughly
characterized. With this new scaling, the magnitude of α required for good estimator
performance is a quantitative measure of how ‘clean’ the measurements have to be
(relative to the magnitude of the state disturbances) to achieve the desired closed-loop
performance of the H2 estimator. The dual structure of the control and estimation
problems is retained with this scaling, clearly indicating the coupling and decoupling
of the two problems as the three scalar parameters are varied.

Given control of the wall-normal component of boundary velocity only, the flow
system is found to be stabilizable but not controllable. Given measurements of wall
skin-friction only, the flow system is found to be detectable but not observable. It is
shown that H2 estimators and controllers maximize closed-loop system performance
with respect to Gaussian disturbances by minimizing the 2-norm of the transfer
function from the disturbances w to an appropriate performance measure z, denoted
||Tzw||2. In contrast, H∞ estimators and controllers modify the corresponding H2

systems in their response to worst-case disturbances by bounding the ∞-norm of the
transfer function from the disturbances to the performance measure, denoted ||Tzw||∞.
Reducing γ to the minimum value γ0 for which a solution to the resulting Riccati
equations exists results in the minimization of ||Tzw||∞.

By reducing γ, the structured disturbance term of an H∞ estimator/controller
identifies and stabilizes the response of the corresponding H2 closed-loop system
to the particular disturbance to which it is most sensitive, and thus uses smaller
amounts of feedback to attain the same level of worst-case system performance
than would be necessary by reducing ` or α alone. Such reduced feedback re-
sults in smaller demands on the actuators used to achieve the closed-loop forcing
and improved robustness to inaccuracies in the system model; the reduced feed-
back applied in the H∞ approach results in reduced opportunity for improper
feedback to disrupt the closed-loop system. Together, the scalar parameters {γ, α, `}
provide a large degree of flexibility in the design of the H∞ estimator/controllers
to obtain the best trade-offs possible in the closed-loop systems between Gaus-
sian disturbance response, worst-case disturbance response, and feedback levels
required.
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